
ELF Nightmares:
GOTs, PLTs, and Relocations 

Oh My
John Baldwin

BSDCan

13 June 2025



Overview

• The problem

• Relocations

• Code generation modes

• GOT indirection

• Function indirection via PLT

• Code generation revisited

• Copy Relocations and Canonical PLT Entries

• Indirect functions



The Problem: Mapping Symbols to Addresses

• Source code refers to functions and data objects by symbol names

• Machine code refers to functions and data by addresses

#include <stdio.h>

int main(void)
{
 printf(“hello world\n”);
 return (0);
}

main()

printf()

0

N



A few definitions (1)

• A compiler translates source code from one language into another
• Often the second language is assembly

• clang, gcc

• An assembler generates object files containing machine code and 
initial data values
• Object files are generally split into sections where each section holds a single 

type of data

• clang, as



A few definitions (2)

• A static linker merges sections from one or more object files into an 
output executable or shared library (linked output file)
• Executables can be either static or dynamic

• ld.lld, ld.bfd

• A run-time loader prepares a dynamic executable for execution 
including loading dependencies (shared libraries)
• Also called dynamic linker, run-time linker

• ld-elf.so.1



The Problem: Refined

• Converting source code into machine code is a multi-step process

• Machine code is generated by the compiler and assembler and 
stored in object files

• But the final addresses of symbols are not known until the executable 
is linked by the static linker

• Solution:  The static linker patches generated machine code and data 
with the final addresses

• New problem: How to describe this patching?



Linking a Static Executable

• Each object file is assembled to run at address zero

• As the static linker combines input sections from object files it 
rearranges input sections (e.g. merging all .text input sections into a 
single .text output section)

• Once the input sections are merged and laid out, the static linker can 
then compute the final addresses of all symbols

• Once the final addresses are known, the static linker can apply 
patches to instructions or data



Static Linking Hello World

• Target address of branch 
instruction from main() in hello.o 
patched to final address of 
printf() imported from libc.a

• Global variables that contain 
pointers must also be patched 
(e.g. TAILQ_HEAD_INITIALIZER) main()

printf()

0

N



Dynamic Linking

• When using shared libraries, some addresses are not known until run 
time

• These addresses cannot be patched by the static linker in the linker 
output file but are instead patched at run time by the run-time 
loader in the in-memory copy of an output file

• For example, if the hello world example is linked dynamically, the 
final address of printf() is not known until the shared C library is 
loaded into the virtual memory of a process



Relocations

• The process of rearranging object file input sections in the static 
linker relocates individual functions and global variables to new 
addresses

• Static relocations are data structures generated by compilers and 
assemblers to describe the patches required by object files and are 
consumed by the static linker

• Dynamic relocations are similar data structures generated by the 
static linker to describe patches required by linked output files and 
are consumed by the run-time loader

• In ELF, both types of relocations use the same underlying data 
structures



ELF Relocations

• ELF relocations contain fields that represent the following
• The target address (file offset) to be patched

• The type of relocation to perform

• The symbol the target is referring to (optional)

• An addend to add to the resolved address (optional)

• Elf_Rel does not include an explicit addend
• If an addend is used, it is stored in the target address (relocation is not 

idempotent!)

• Elf_Rela does include an explicit addend



ELF Relocation Types

• Types are architecture-dependent

• Type specifies various properties of the relocation
• Address calculation formula
• How to store the result

• Some classes of relocation types
• Absolute address (R_*_ABS*) (S + A)
• Address relative to the object’s base address (R_*_RELATIVE) (B + A)
• Address relative to the current PC value (S + A - P)

• https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table

https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table


Multi-Relocation Patches

• Some architectures (e.g. 
AArch64 and RISC-V) use 
multiple instructions to 
construct an address

• Each instruction needs its own 
relocation

 return (&foo);

When assembled becomes:

 lui a0, %hi(foo)

 addi a0, a0, %lo(foo)

 ret

Upper 20 bits of &foo

Low 12 bits of &foo



Examining Relocations

• readelf -r: List of relocations by section

• objdump -r: List of static relocations by section

• objdump -R: List of dynamic relocations by section

• objdump -dr: Display static relocations inline with disassembly

• Compiler explorer: https://godbolt.org

https://godbolt.org/
https://godbolt.org/


Compiler Explorer: RISC-V Example

extern int foo;

void *bar(void)

{

 return (&foo);

}

RISC-V rv64gc clang 20.1.0 -O2 -fno-pic

bar:
  lui a0, %hi(foo)
  addi a0, a0, %lo(foo)
 ret



Compiler Explorer: RISC-V Example

extern int foo;

void *bar(void)

{

 return (&foo);

}

RISC-V rv64gc clang 20.1.0 -O2 -fno-pic

- Compile to binary object

bar:

 lui a0,0x0

  R_RISCV_HI20 foo

  R_RISCV_RELAX *ABS*

 mv a0,a0

  R_RISCV_LO12_I foo

  R_RISCV_RELAX *ABS*

 ret



ELF Object File Code Generation

• Position-Dependent Executable (PDE)
• Static executables and libraries

• Dynamic executables

• -fno-pic

• Position-Independent Code (PIC)
• Shared libraries

• -fpic / -fPIC

• Position-Independent Executable (PIE)
• Static executables and libraries

• Dynamic executables

• -fpie / -fPIE



Evolution of ELF Object Files

• Static executables as the starting point / base case (PDE)

• Shared libraries built on top of this base
• Library object files compiled as PIC and linked into a .so

• Executable object files remain unchanged, but linked differently

• PIE added relatively recently
• Motivated by ASLR

• Run-time relocations like shared libraries

• ”Optimized” PIC



PIC Mode Differences

• Shared libraries can be loaded at different addresses
• Symbols cannot be directly accessed at absolute addresses

• PC-relative access to objects within the same shared library are ok

• Global variables and functions might be defined in a different linked 
output file
• Address of variables and functions are only known at run time by the run-

time loader



Accessing Globals in PIC

• Run-time loader could patch instructions directly similar to static 
linker
• Prevents sharing underlying physical pages containing .text across multiple 

processes

• Instead, variables and functions are accessed indirectly
• Static linker constructs an array of pointers known as a Global Offset Table 

(GOT)

• Compiler generates code that reads pointers from GOT and dereferences 
them to access data

• Static linker generates dynamic relocations describing how to populate GOT 
entries that are handled by the run-time loader



Accessing Globals in PIC

21

foo()

&xGOT

x

Run-time Loader 
Processes ELF 

Relocations

Resolves 
Location of ‘x’

Stores Pointer in 
GOT



Preemptible Symbols (1)

• “Remote” symbols (those not defined in the same linker output file) 
must always be accessed indirectly via GOT entries in PIC mode
• Note that the compiler does not know which “remote” symbols in a single 

object file will end up “remote” in the final linker output file

• However, ELF also uses GOT indirection for some symbols defined in 
the same linker output file
• Permits overriding malloc() and free() in libc via LD_PRELOAD as an example

• Symbols accessed via GOT indirection are preemptible symbols



Preemptible Symbols (2)

• ELF symbols have a visibility property in addition to binding (local vs 
global)
• “default” global symbols are exported to other output files and are 

preemptible at run time

• “hidden” global symbols are not exported to other output files and are not 
preemptible
• Think of these as local symbols shared by multiple object files within a library or 

executable

• “protected” global symbols are exported to other output files, but are not 
preemptible within the containing output file



Calling Preemptible Functions in PIC

• The code generation for PIC could read function pointers from the 
GOT and branch to them as indirect function calls similar to accessing 
data variables via GOT indirection

• But ELF does not do that…
• Some libraries have many “remote” function calls, but individual processes 

may only invoke a subset.  However, processing all the dynamic relocations 
for those GOT entries would add overhead in the run-time loader 
initialization.

• PDE dynamic executables invoke “remote” functions, too



PLTs

• Static linker generates a Procedure Linkage Table (PLT) for calls to 
remote functions

• Each preemptible function is associated with a stub function (or 
“thunk”) in the PLT

• Each stub function reads a pointer from a separate PLT GOT (distinct 
from the normal GOT and also generated by the static linker) and 
branches to that pointer

• Each entry in the PLT is associated with a dynamic relocation 
(typically R_<arch>_JUMP_SLOT) whose symbol is the name of the 
remote function and the target address is the PLT GOT entry



Lazy PLT Resolution (1)

• To avoid the overhead of processing jump slot relocations on startup, 
PLT GOT entries are resolved on demand

• The first entry in the PLT is a special thunk, PLT0, which reads a 
function pointer and an opaque data pointer from two entries at the 
start of the PLT GOT and branches to the function pointer passing the 
opaque data pointer in a specific register

• PLT GOT entries are initialized so that on the first call, the PLT thunk 
stores the index of the PLT entry in a specific register and branches to 
the special PLT0 thunk



Lazy PLT Resolution (2)

• The run-time loader initializes the two entries at the start of the PLT 
GOT with code and data pointers
• For FreeBSD, the code pointer points to _rtld_bind_start() and the data 

pointer points to the associated Obj_Entry

• When the run-time loader is called, it uses the PLT index to locate the 
jump slot relocation and applies that relocation to update the PLT 
GOT entry

• The resolved function pointer address is also branched to directly at 
the end of the resolver routine



Lazy PLT Example

#include <stdio.h>

int main(void)

{

  printf(“hello “);

  printf(“world\n”);

  return 0;

}

main()

PLT0

printf@plt

_rtld_bind_start()

ld-elf.so.1

printf()

libc.so.7

PLT

PLT GOT

obj_main



PDE Data and Code Access (Static Binary / Library)

int bar(int *);

extern int x;

int
foo(void)
{
 return bar(&x) + 4;
}

x86-64 gcc 14.2 -O2 -fno-pic

foo:
     subq    $8, %rsp
     movl    $x, %edi
     call    bar
     addq    $8, %rsp
     addl    $4, %eax
     ret

29

Absolute 32-bit 
Address of “x”

32-bit PC-relative
Branch



PIC Data and Code Access (Shared Library)

int bar(int *);

extern int x;

int
foo(void)
{
 return bar(&x) + 4;
}

x86-64 gcc 14.2 -O2 –fPIC

foo:
     subq    $8, %rsp
     movq    x@GOTPCREL(%rip), %rdi
     call    bar@PLT
     addq    $8, %rsp
     addl    $4, %eax
     ret

30

Reads “&x” from GOT via 
PC-relative Address

PC-relative Branch 
to PLT Stub



PDE Data and Code Access (Dynamic Binary)

int bar(int *);

extern int x;

int
foo(void)
{
 return bar(&x) + 4;
}

x86-64 gcc 14.2 -O2 -fno-pic

foo:
     subq    $8, %rsp
     movl    $x, %edi
     call    bar
     addq    $8, %rsp
     addl    $4, %eax
     ret

31

What if “x” is in a 
shared library?

What if “bar” is in 
a shared library?



PDE Dynamic Executables

• Q: How to handle branches to external functions in shared libraries?

• A: PLT Stub
• Linker rewrites target of branch to address of PLT stub

• Q: How to handle absolute addresses for external data in shared 
libraries?

• A: Copy Relocations
• Static linker reserves space in .bss of executable for a copy of x (x’)

• run-time loader copies value of x from shared library into x’

• run-time loader resolves symbol lookups for x to x’ instead



Copy Relocations

33

foo()

x’

Executable

x

Shared 
Library

&x

Stores Pointer in 
GOT

Copies value 
of x to x’

GOT



PDE Function Pointer (Static Binary / Library)

#include <stdio.h>

void foo(void)
{
    printf("fclose = %p\n", &fclose);
}

x86-64 gcc 14.2 -O2 -fno-pic

.LC0:
     .string "fclose = %p\n"
foo:
     movl    $fclose, %esi
     movl    $.LC0, %edi
     xorl    %eax, %eax
     jmp     printf

34

32-bit PC-relative
Branch

Absolute 
Addresses



PIC Function Pointer (Shared Library)

#include <stdio.h>

void foo(void)
{
    printf("fclose = %p\n", &fclose);
}

x86-64 gcc 14.2 -O2 –fPIC

.LC0:
     .string "fclose = %p\n"
foo:
     movq    fclose@GOTPCREL(%rip), %rsi
     leaq    .LC0(%rip), %rdi
     xorl    %eax, %eax
     jmp     printf@PLT

35

Reads “&fclose” from GOT 
via PC-relative Address

PC-relative Branch 
to PLT Stub



PDE Function Pointer (Dynamic Binary)

#include <stdio.h>

void foo(void)
{
    printf("fclose = %p\n", &fclose);
}

x86-64 gcc 14.2 -O2 -fno-pic

.LC0:
     .string "fclose = %p\n"
foo:
     movl    $fclose, %esi
     movl    $.LC0, %edi
     xorl    %eax, %eax
     jmp     printf

36

What absolute address 
to use for “&fclose”?



Canonical PLT Entries

• Q: What absolute address (fixed at link time) can we use for an 
external function pointer?

• A: Address of the PLT stub for that function in the executable.

• Q: How to handle C’s requirement that all function pointers to the 
same function compare equal?

• A: All other data pointers to the function have to use the address of 
the PLT stub in the executable.

• Copy Relocations for Function Pointers

37



Canonical PLT Entries

38

foo()

fclose@plt

Executable

fclose()

libc

&fclose

Stores Pointer in 
GOT

GOT

&fclosePLT GOT

Stores Pointer in 
PLT GOT



What about PIE?

• -fPIE uses GOT indirection for data variables on clang (but not GCC!)
• No copy relocations for clang

• -fPIE uses GOT indirection for function pointers on both GCC and 
clang
• No canonical PLT entries

39



PIE Data and Code Access (Dynamic Binary) - GCC

int bar(int *);

extern int x;

int
foo(void)
{
 return bar(&x) + 4;
}

x86-64 gcc 14.2 -O2 -fPIE

foo:
     subq    $8, %rsp
     leaq    x(%rip), %rdi
     call    bar@PLT
     addq    $8, %rsp
     addl    $4, %eax
     ret

40

PC-relative 
address of “x”

PC-relative Branch 
to PLT Stub



PIE Data and Code Access (Dynamic Binary) - clang

int bar(int *);

extern int x;

int
foo(void)
{
 return bar(&x) + 4;
}

x86-64 clang 19.1.0 -O2 -fPIE

foo:
     pushq   %rax
     movq    x@GOTPCREL(%rip), %rdi
     callq   bar@PLT
     addl    $4, %eax
     popq    %rcx
     retq

41

Identical to
-fPIC



PIE Function Pointer (Dynamic Binary)

#include <stdio.h>

void foo(void)
{
    printf("fclose = %p\n", &fclose);
}

x86-64 gcc 14.2 -O2 –fPIE

.LC0:
     .string "fclose = %p\n"
foo:
     movq    fclose@GOTPCREL(%rip), %rsi
     leaq    .LC0(%rip), %rdi
     xorl    %eax, %eax
     jmp     printf@PLT

42

Identical to
-fPIC



Indirect Functions (IFUNC)

• Indirect functions permit resolving a symbol to the address of another 
symbol at run time
• Typically used to provide optimized versions of functions (e.g. SSE2 vs AVX)

• The value of symbols of type STT_GNU_IFUNC is the address of a resolver 
function
• The resolver function returns the resolved symbol value

• When resolving the address of an indirect function symbol, the run-time 
loader calls the resolver function to obtain the final symbol value

• R_<arch>_IRELATIVE relocations are a relative relocation whose initial value 
is also the address of a resolver function



Miscellaneous Notes

• Default code generation varies by compiler and architecture

• -fno-plt is a recent innovation to disable PLT indirection
• Function calls read from the GOT directly

• Some toolchain folks are advocating for GOT indirection for PDE         
(-fno-pic) to eliminate copy relocations and canonical PLTs entirely
• Linker relaxations may be able to relax GOT indirection back to PDE-like direct 

access at static link time

• Static libraries can contain PIC object files
• Useful as an input when linking a shared library



Guide to Relevant ELF File Sections

Name Object Files Linker Output Files Description

.text ✓ ✓ Machine code

.data ✓ ✓ Writable global variables

.rodata ✓ ✓ Read-only global variables, constant pools

.bss ✓ ✓ Writable global variables initialized to 0

.rel[a].<section> ✓ Static ELF relocations

.got ✓ Data GOT

.plt ✓ PLT stubs

.got.plt ✓ PLT GOT

.rel[a].dyn ✓ Dynamic ELF relocations for everything but PLT GOT

.rel[a].plt ✓ Dynamic ELF relocations for PLT GOT



MIPS

• MIPS is a special snowflake among ELF architectures
• I think it suffered perhaps from being “first”

• No dynamic ELF relocations for the GOT, instead the single GOT is split into 
separate regions with implicit rules for resolving GOT entries for each region
• “Local” region are all relative relocations without a symbol 

(DT_MIPS_LOCAL_GOTNO entries)
• “Global” region contains symbol addresses where the GOT entries are associated 

with a contiguous range of indices in the symbol table (starting at 
DT_MIPS_GOTSYM symbol index)

• PLT stubs use the end of the “Global” region (starting at DT_MIPS_SYMTABNO)

• Index passed to run-time loader’s resolver from PLT stubs is an index into the 
symbol table
• GOT index is computed as DT_MIPS_LOCAL_GOTNO + (symbol index – 

DT_MIPS_GOTSYM)

More reasons I 
dislike MIPS



Resources

• Linkers and Loaders by John Levine
• Only book I’m aware of that talks about this topic…

• … but it was published in 1999 while was an undergrad

• Compiler Explorer: https://godbolt.org

• MaskRay (LLVM developer)’s blog: https://maskray.me/blog/

https://godbolt.org/
https://maskray.me/blog/

	Slide 1: ELF Nightmares: GOTs, PLTs, and Relocations Oh My
	Slide 2: Overview
	Slide 3: The Problem: Mapping Symbols to Addresses
	Slide 4: A few definitions (1)
	Slide 5: A few definitions (2)
	Slide 6: The Problem: Refined
	Slide 7: Linking a Static Executable
	Slide 8: Static Linking Hello World
	Slide 9: Dynamic Linking
	Slide 10: Relocations
	Slide 11: ELF Relocations
	Slide 12: ELF Relocation Types
	Slide 13: Multi-Relocation Patches
	Slide 14: Examining Relocations
	Slide 15: Compiler Explorer: RISC-V Example
	Slide 16: Compiler Explorer: RISC-V Example
	Slide 17: ELF Object File Code Generation
	Slide 18: Evolution of ELF Object Files
	Slide 19: PIC Mode Differences
	Slide 20: Accessing Globals in PIC
	Slide 21: Accessing Globals in PIC
	Slide 22: Preemptible Symbols (1)
	Slide 23: Preemptible Symbols (2)
	Slide 24: Calling Preemptible Functions in PIC
	Slide 25: PLTs
	Slide 26: Lazy PLT Resolution (1)
	Slide 27: Lazy PLT Resolution (2)
	Slide 28: Lazy PLT Example
	Slide 29: PDE Data and Code Access (Static Binary / Library)
	Slide 30: PIC Data and Code Access (Shared Library)
	Slide 31: PDE Data and Code Access (Dynamic Binary)
	Slide 32: PDE Dynamic Executables
	Slide 33: Copy Relocations
	Slide 34: PDE Function Pointer (Static Binary / Library)
	Slide 35: PIC Function Pointer (Shared Library)
	Slide 36: PDE Function Pointer (Dynamic Binary)
	Slide 37: Canonical PLT Entries
	Slide 38: Canonical PLT Entries
	Slide 39: What about PIE?
	Slide 40: PIE Data and Code Access (Dynamic Binary) - GCC
	Slide 41: PIE Data and Code Access (Dynamic Binary) - clang
	Slide 42: PIE Function Pointer (Dynamic Binary)
	Slide 43: Indirect Functions (IFUNC)
	Slide 44: Miscellaneous Notes
	Slide 45: Guide to Relevant ELF File Sections
	Slide 46: MIPS
	Slide 47: Resources

