
Adventures in porting a Wayland

Compositor to NetBSD and OpenBSD

Jeff Frasca

BSDCan 2025



What is Wayland?

• Maintained by freedesktop.org

• Rethinking of GUI display protocol for
modern graphics hardware

• Focus on performance for local
applications

• Removed legacy features



What is Wayland?

Uses the modular Xorg ecosystem as a
parts bin

• MesaLib and DRM

• xkbcommon

Unfortunately, also a lot of Linuxisms



Wayland Security

• Wayland uses Unix domain sockets by
default

• graphical data gets moved around with
DMA-BUFs

• Protocol has a better story about
keyloggers

• Accessibility problems

• Screen locks are very non-uniform, and
I suspect jwz is going to end up
laughing at us



Wayland Terminology

• Compositor, Display Server

• surface, view (synonyms for
“window”)

• seat (keyboard-mouse-screen
abstraction)

• Wayland (protocol, library, ecosystem)



Will you HAVE to use it?

• This is a talk at a BSD Conference,
the answer is:

NO.
• We vendor X11 into our OSes, so
there is some amount of maintenance
that doesn’t rely on freedesktop.org

• Wayland support means better
graphics acceleration for X11 users!

• X11 needed for GUIs on supported
retro hardware



Working with the Wayland Protocol

• Base protocol is very simple and
designed to be extended

• It’s really a protocol development
framework

• Extensions are specified in XML

• Core protocols are actually extensions

• wl compositor, wl display and
others are extensions that are shipped
with the core wayland library.



Working with the Wayland Protocol

Example protocol definition:
<?xml version="1.0" encoding="UTF-8"?>

<protocol name="xuake_control_v1">

<interface name="xuake_control" version="1">

<description summary="xuake control proto">

This is a protocol used by xuake to allow a client to send commands

programmatically.

</description>

<request name="about">

<description summary="Get basic info about compositor">

Get short version info and blurb text from the compositor

Essentially a heavy-weight ping.

</description>

</request>

<event name="about_info">

<description summary="Response event for about request">

Sends short blurb with version info to the client.

</description>

<arg name="info" type="string" summary="about blurb" />

</event>

<request name="exit">

<description summary="Cause xuake to exit">

Request compositor terminates

</description>

</request>

</interface>

</protocol>



My Compositor: Xuake

This space intentionally
left blank

(I don’t have a logo)

The Good:

• Stacking Window Manager

• Minimalist, Keyboard+CLI forward,
built-in terminal emulator

• Command line control tool: xk

• Embedded Lua interpreter used for
configuration and event driven
scripting

• AwesomeWM/dwm desktop tags



My Compositor: Xuake

This space intentionally
left blank

(I don’t have a logo)

The Bad:

• Perpetual Alpha Software

• No lock screen/screen-saver

• Output hotplug is hella broken

• No drag-n-drop support (the developer
is a weirdo)

• Lua API+callbacks are wildly
incomplete

• Don’t turn on all the compiler
warnings

• . . . and so much more



Graphics Subsystem Diagram

Kernel
DRM KMS

Input
Events

Application or Application Toolkit

Wayland Compositor

Mesa

libdrm

EGL
Vulkan

libwayland-server

libwayland-client

libinput
wscons



In Defense of ioctl(2)

• The Filesystem is the UI abstraction of a Unix Kernel

• Most hardware has natural mappings for normal file
operations

• Some hardware needs a driver-specific API

• ioctl(2) is how we do custom driver APIs

• It keeps the generic syscall interface very simple

• Just think of the request macro as the name of the API
call



DRM API

Kernel
DRM

Mesa

libdrm

• Modern graphics hardware does not
have simple mappings to file
operations

• Direct Rendering Manager API
provides a rich set of ioctl(2)s for

• hardware configuration
• video memory management
• drawing commands
• and other stuff

• API methods are per-card and granular



DRM MASTER vs Render Nodes

Kernel
DRM

Mesa

libdrm

• /dev/dri/card0

OpenBSD major: 87; minor: 0

• /dev/dri/renderD128

OpenBSD major: 87; minor: 128

• Privilege separation mechanism

• only one process is DRM MASTER

• Render Nodes are for unprivileged
processes for drawing



DRM API on BSD

Kernel
DRM

Mesa

libdrm

• DRM source is pulled from the Linux
kernel

• Each BSD kernel has a bunch of shim
code added

• Each kernel does it a little differently

• Not all data structures are fully used

• Extra ioctl(2) calls needed for
libdrm



libdrm

Kernel
DRM

Mesa

libdrm

• Userspace front-end to the DRM API

• system-wide rather than per-card

• organized as larger, logical operations

• libdrm functions often make multiple
ioctl(2) calls

• Has driver specific sub-libraries, eg,
libdrm-radeon



libdrm on BSD

Kernel
DRM

Mesa

libdrm

• #ifdef, #ifdef everywhere!

• libdrm on Linux heavily leverages
procfs and sysfs

• Most of the extra DRM ioctl(2)

calls provide information Linux
exposes via sysfs

• Because every BSD does things a little
different for the DRM shims in the
kernel...

• ...the libdrm calls often have unique
implementations for each BSD



libdrm on BSD –

drmParsePciBusInfo

Kernel
DRM

Mesa

libdrm

An Example: drmParsePciBusInfo

• Gets PCI domain, bus, device and
function for the GPU

• used by Mesa during initialization

• Linux uses sysfs

• FreeBSD uses a sysctl

• OpenBSD and DragonflyBSD add
DRM IOCTL GET PCIINFO

• NetBSD extends
DRM IOCTL GET UNIQUE to work on
render nodes



libdrm on BSD

Kernel
DRM

Mesa

libdrm

Should things be harmonized?



Graphics Subsystem Diagram

Kernel
DRM KMS

Input
Events

Application or Application Toolkit

Wayland Compositor

Mesa

libdrm

EGL
Vulkan

libwayland-server

libwayland-client

libinput
wscons



Mesa and Wayland-EGL

Application or Application Toolkit

Wayland Compositor

Mesa

libwayland-server

libwayland-client

• The compositor initializes EGL to use
platform drm

• Applications that use EGL for
rendering need platform wayland

• platform wayland causes Mesa to
depend on libwayland

• OpenBSD and NetBSD don’t include
platform wayland in the vendored
Mesa



Mesa and Wayland-EGL: NetBSD

Application or Application Toolkit

Wayland Compositor

Mesa

libwayland-server

libwayland-client

On NetBSD, there’s a straightforward path
to get platform wayland support in
libEGL

• Do not install the X11 sets

• Add X11 TYPE=modular to mk.conf

• Build graphics/MesaLib using
pkgsrc



Mesa and Wayland-EGL: NetBSD

Application or Application Toolkit

Wayland Compositor

Mesa

libwayland-server

libwayland-client

But there are some catches

• Caveat 1: MesaLib in pkgsrc is on the
Amber branch for compatibility with
old hardware

• Caveat 2: This only works with
-current; the extension to
DRM IOCTL GET UNIQUE didn’t make
it into NetBSD 10

• Caveat 3



Mesa and Wayland-EGL: OpenBSD

Application or Application Toolkit

Wayland Compositor

Mesa

libwayland-server

libwayland-client

OpenBSD 7.7 is both more and less
straightforward, first, the more side:

• There are binary packages for
libwayland (and sway and wlroots)

• The toolkit libraries in ports are
compiled with wayland support!

• Xuake compiled against a fresh
OpenBSD install with dependencies
from ports on 7.7

• Qt apps from ports worked once the
Qt wayland plugin was installed



Mesa and Wayland-EGL: OpenBSD

Application or Application Toolkit

Wayland Compositor

Mesa

libwayland-server

libwayland-client

And the less straightforward side:

• xkterm, my Wayland-EGL based
terminal emulator, crashed on startup

• Xenocara uses a lightly modified Mesa
23.3.6

• it wasn’t too hard to patch the stock
Mesa tarball and install over the files
from xbase

• This can also be solved with pkgsrc,
using exactly the steps for NetBSD



Graphics Subsystem Diagram

Kernel
DRM KMS

Input
Events

Application or Application Toolkit

Wayland Compositor

Mesa

libdrm

EGL
Vulkan

libwayland-server

libwayland-client

libinput
wscons



Input Events – libinput

Kernel Input
Events

Wayland Compositor
libwayland-server

libinput
wscons

• Linux rewrite of its input handling
system

• designed to handle hotplugging a
broad array of input devices

• has ports to FreeBSD, OpenBSD and
DragonflyBSD

• not ported to NetBSD

• Overengineered, IMO

• required by all compositors besides
Xuake and swc



Input Events – wscons

Kernel Input
Events

Wayland Compositor
libwayland-server

libinput
wscons

• NetBSD and OpenBSD’s console
system

• includes input event multiplexers

• Simple. Possibly underengineered

• Xuake’s wscons backend follows Nia’s
swc port

• Mixed PC and USB keyboard bug



wlroots on NetBSD

• Needs a ‘wscons‘ backend

• Needs a simplified seat backend

• Examples of both of these are in the vendored version of
wlroots in Xuake

• Could use similar approach as pkgsrc kqueue(2) patch
for devel/wayland



Thank You

• Taylor R. Campbell

• Nia Alarie

• OpenBSD dev team

• OpenBSD ports maintainers, especially the wayland
packages

• NetBSD dev team

• pkgsrc maintainers

• freedesktop.org

• sway and wlroots teams

• BSDCan Organizers and Volunteers



Future work

• OpenBSD port that doesn’t need separately built Mesa

• NetBSD AMDGPU debugging

• pkgsrc build for Xuake

• wscons mixed keyboard fixes

• Optional modern MesaLib package for pkgsrc

• Lots of feature work in Xuake itself

• wscons cleanup bugs in OpenBSD

• DRM shutdown code missing in NetBSD

• file bugs instead of surprising devs in a conference talk



Questions

Thank you for coming to my talk!

Any questions?

Slides created with LATEX on OpenBSD+Xuake
Run BSD logo pirated from runbsd.info

Mastodon: @overeducatedredneck@bitbang.social


