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What is Wayland?

• Maintained by freedesktop.org

• Rethinking of GUI display protocol for
modern graphics hardware

• Focus on performance for local
applications

• Removed legacy features



What is Wayland?

Uses the modular Xorg ecosystem as a
parts bin

• MesaLib and DRM

• xkbcommon

Unfortunately, also a lot of Linuxisms



Wayland Security

• Wayland uses Unix domain sockets by
default

• graphical data gets moved around with
DMA-BUFs

• Protocol has a better story about
keyloggers

• Accessibility problems

• Screen locks are very non-uniform, and
I suspect jwz is going to end up
laughing at us



Wayland Terminology

• Compositor, Display Server

• surface, view (synonyms for
“window”)

• seat (keyboard-mouse-screen
abstraction)

• Wayland (protocol, library, ecosystem)



Will you HAVE to use it?

• This is a talk at a BSD Conference,
the answer is:

NO.
• We vendor X11 into our OSes, so
there is some amount of maintenance
that doesn’t rely on freedesktop.org

• Wayland support means better
graphics acceleration for X11 users!

• X11 needed for GUIs on supported
retro hardware



Working with the Wayland Protocol

• Base protocol is very simple and
designed to be extended

• It’s really a protocol development
framework

• Extensions are specified in XML

• Core protocols are actually extensions

• wl compositor, wl display and
others are extensions that are shipped
with the core wayland library.



Working with the Wayland Protocol

Example protocol definition:
<?xml version="1.0" encoding="UTF-8"?>

<protocol name="xuake_control_v1">

<interface name="xuake_control" version="1">

<description summary="xuake control proto">

This is a protocol used by xuake to allow a client to send commands

programmatically.

</description>

<request name="about">

<description summary="Get basic info about compositor">

Get short version info and blurb text from the compositor

Essentially a heavy-weight ping.

</description>

</request>

<event name="about_info">

<description summary="Response event for about request">

Sends short blurb with version info to the client.

</description>

<arg name="info" type="string" summary="about blurb" />

</event>

<request name="exit">

<description summary="Cause xuake to exit">

Request compositor terminates

</description>

</request>

</interface>

</protocol>



My Compositor: Xuake

This space intentionally
left blank

(I don’t have a logo)

The Good:

• Stacking Window Manager

• Minimalist, Keyboard+CLI forward,
built-in terminal emulator

• Command line control tool: xk

• Embedded Lua interpreter used for
configuration and event driven
scripting

• AwesomeWM/dwm desktop tags



My Compositor: Xuake

This space intentionally
left blank

(I don’t have a logo)

The Bad:

• Perpetual Alpha Software

• No lock screen/screen-saver

• Output hotplug is hella broken

• No drag-n-drop support (the developer
is a weirdo)

• Lua API+callbacks are wildly
incomplete

• Don’t turn on all the compiler
warnings

• . . . and so much more
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In Defense of ioctl(2)

• The Filesystem is the UI abstraction of a Unix Kernel

• Most hardware has natural mappings for normal file
operations

• Some hardware needs a driver-specific API

• ioctl(2) is how we do custom driver APIs

• It keeps the generic syscall interface very simple

• Just think of the request macro as the name of the API
call



DRM API

Kernel
DRM

Mesa

libdrm

• Modern graphics hardware does not
have simple mappings to file
operations

• Direct Rendering Manager API
provides a rich set of ioctl(2)s for

• hardware configuration
• video memory management
• drawing commands
• and other stuff

• API methods are per-card and granular



DRM MASTER vs Render Nodes

Kernel
DRM

Mesa

libdrm

• /dev/dri/card0

OpenBSD major: 87; minor: 0

• /dev/dri/renderD128

OpenBSD major: 87; minor: 128

• Privilege separation mechanism

• only one process is DRM MASTER

• Render Nodes are for unprivileged
processes for drawing



DRM API on BSD

Kernel
DRM

Mesa

libdrm

• DRM source is pulled from the Linux
kernel

• Each BSD kernel has a bunch of shim
code added

• Each kernel does it a little differently

• Not all data structures are fully used

• Extra ioctl(2) calls needed for
libdrm



libdrm

Kernel
DRM

Mesa

libdrm

• Userspace front-end to the DRM API

• system-wide rather than per-card

• organized as larger, logical operations

• libdrm functions often make multiple
ioctl(2) calls

• Has driver specific sub-libraries, eg,
libdrm-radeon



libdrm on BSD

Kernel
DRM

Mesa

libdrm

• #ifdef, #ifdef everywhere!

• libdrm on Linux heavily leverages
procfs and sysfs

• Most of the extra DRM ioctl(2)

calls provide information Linux
exposes via sysfs

• Because every BSD does things a little
different for the DRM shims in the
kernel...

• ...the libdrm calls often have unique
implementations for each BSD



libdrm on BSD –

drmParsePciBusInfo

Kernel
DRM

Mesa

libdrm

An Example: drmParsePciBusInfo

• Gets PCI domain, bus, device and
function for the GPU

• used by Mesa during initialization

• Linux uses sysfs

• FreeBSD uses a sysctl

• OpenBSD and DragonflyBSD add
DRM IOCTL GET PCIINFO

• NetBSD extends
DRM IOCTL GET UNIQUE to work on
render nodes



libdrm on BSD

Kernel
DRM

Mesa

libdrm

Should things be harmonized?
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Mesa and Wayland-EGL
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• The compositor initializes EGL to use
platform drm

• Applications that use EGL for
rendering need platform wayland

• platform wayland causes Mesa to
depend on libwayland

• OpenBSD and NetBSD don’t include
platform wayland in the vendored
Mesa



Mesa and Wayland-EGL: NetBSD
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On NetBSD, there’s a straightforward path
to get platform wayland support in
libEGL

• Do not install the X11 sets

• Add X11 TYPE=modular to mk.conf

• Build graphics/MesaLib using
pkgsrc



Mesa and Wayland-EGL: NetBSD
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But there are some catches

• Caveat 1: MesaLib in pkgsrc is on the
Amber branch for compatibility with
old hardware

• Caveat 2: This only works with
-current; the extension to
DRM IOCTL GET UNIQUE didn’t make
it into NetBSD 10

• Caveat 3



Mesa and Wayland-EGL: OpenBSD
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OpenBSD 7.7 is both more and less
straightforward, first, the more side:

• There are binary packages for
libwayland (and sway and wlroots)

• The toolkit libraries in ports are
compiled with wayland support!

• Xuake compiled against a fresh
OpenBSD install with dependencies
from ports on 7.7

• Qt apps from ports worked once the
Qt wayland plugin was installed



Mesa and Wayland-EGL: OpenBSD
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And the less straightforward side:

• xkterm, my Wayland-EGL based
terminal emulator, crashed on startup

• Xenocara uses a lightly modified Mesa
23.3.6

• it wasn’t too hard to patch the stock
Mesa tarball and install over the files
from xbase

• This can also be solved with pkgsrc,
using exactly the steps for NetBSD
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Input Events – libinput

Kernel Input
Events

Wayland Compositor
libwayland-server

libinput
wscons

• Linux rewrite of its input handling
system

• designed to handle hotplugging a
broad array of input devices

• has ports to FreeBSD, OpenBSD and
DragonflyBSD

• not ported to NetBSD

• Overengineered, IMO

• required by all compositors besides
Xuake and swc



Input Events – wscons

Kernel Input
Events

Wayland Compositor
libwayland-server

libinput
wscons

• NetBSD and OpenBSD’s console
system

• includes input event multiplexers

• Simple. Possibly underengineered

• Xuake’s wscons backend follows Nia’s
swc port

• Mixed PC and USB keyboard bug



wlroots on NetBSD

• Needs a ‘wscons‘ backend

• Needs a simplified seat backend

• Examples of both of these are in the vendored version of
wlroots in Xuake

• Could use similar approach as pkgsrc kqueue(2) patch
for devel/wayland



Thank You

• Taylor R. Campbell

• Nia Alarie

• OpenBSD dev team

• OpenBSD ports maintainers, especially the wayland
packages

• NetBSD dev team

• pkgsrc maintainers

• freedesktop.org

• sway and wlroots teams

• BSDCan Organizers and Volunteers



Future work

• OpenBSD port that doesn’t need separately built Mesa

• NetBSD AMDGPU debugging

• pkgsrc build for Xuake

• wscons mixed keyboard fixes

• Optional modern MesaLib package for pkgsrc

• Lots of feature work in Xuake itself

• wscons cleanup bugs in OpenBSD

• DRM shutdown code missing in NetBSD

• file bugs instead of surprising devs in a conference talk



Questions

Thank you for coming to my talk!

Any questions?
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