Sandbox Your Program Using FreeBSD's
Capsicum

Jake Freeland
jfree@FreeBSD.org

BSDCan 2025

jfree@FreeBSD.org

About Me

Jake Freeland - jfree@FreeBSD.org

FreeBSD source committer, focusing on porting software from
Linux to FreeBSD and vice versa.

| work at NIKSUN where | maintain a driver stack for custom
networking hardware that is capable of packet capture and live
analysis at 100Gbps speeds.

jfree@FreeBSD.org

Why Care About Program Security

CVEs are on the rise:

Number of CVEs by year

50,000
40,000
30,000
20,000

10,000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

source: cvedetails.com/browse-by-date.php

IBM's Cost of a Data Breach Report 2024 shows that global

average cost of a breach is 4.88 million USD, up 10% over the
previous year.

cvedetails.com/browse-by-date.php

Example Program

Let's start with an example program that we would like to harden.

Consider a program that relays messages between a set of
unprivileged consumer processes and a kernel device.

CONSUMER

RELAY
CONSUMER —>| &« —>
— PROGRAM / eV/XyZ
[111111]

CONSUMER

Program Security

Based on our program’s responsibilities, it is probably going to have
to be a daemon.

A daemon running in the background is more suceptible to attacks
since it doesn’t have a limited runtime window. An attack can be

issued at any time.

This introduces some important security concerns, especially if the
process is run under the root user.

Let's look at security models that could protect our program.

Security Models: None

The easiest security model is to run our daemon under the root
user, giving it access to all necessary resources. This is a
suboptimal model because we'd be giving the daemon access to
more resources than it really needs.

If an exploit that leads to code execution is found, then the
attackers could potentially obtain unrestricted access to the
underlying system.

Security Models: POSIX 1003.1e Capabilities

Another approach would involve running the daemon as an
unprivileged user, but with POSIX 1003.1e capabilities.

In short, the POSIX 1003.1e standard splits root privileges up into
more granular pieces called capabilities. Individual capabilities can

be assigned to specific processes to give them root-like privileges in
a specific kernel subsystem.

For example, processes with the CAP_KILL capability can bypass
permission checks for sending signals.

R R

Security Models: Pledge

A similar kind of privilege separation is provided in OpenBSD's
pledge(2) framework. Unlike POSIX 1003.1e capabilities, pledge
narrows the calling process’ privileges based on a provided set of
promises instead of expanding them.

With pledge(2), our relay program could run as the root user, but
with restricted access to all kernel subsystems that weren’t specified
in the promises list.

KR

Security Models: Capsicum

Capsicum provides a security sandbox called capability mode. Once
a program enters capability mode, access to new resources and
interprocess communication are severely curtailed.

The restrictive nature of sandboxes can seem daunting, but they
offer the most granular protection out of the other models

mentioned.
a -
* % % Y % -%
N\ VAN
% % — % %

Example Program, Continued

Now that we know our options, let's analyze our example problem
more and identify what models work best.

Example Program, Continued

Unprivileged consumer processes send messages over a UNIX socket
to the relay program. If the consumer’s message is approved by the
relay, a relevant ioct1(2) call will be made to /dev/xyz.

RELAY PROGRAM

if (request_ok(request))

CONSUMER | ssmritesp| reads forward_to_dev(); ioctl /dev/xyz @@
1
else

respond_failure();

7

Example Program, Continued

Once the target device processes a message, it will send a response
back to our program. Depending on the response, our program will
take different actions. It may:

» Relay the response back to the requesting process over the
UNIX socket

» Send a signal to the requesting process

» Write data to a temporary shared memory region, whose path
is provided by the requesting process

/ | RELAY PROGRAM
write

pead if (response_ok(response)) {

/ respond_ok();
} else if (response_sig(response)) {
- o respontwith 5390 S W > %
} else if (response_shm(response)) { [
reag wite \ 3
N ores

respond_in_shm();

Example Program Resource Requirements

Based on the responsibilities of our program, let’s list out required
privileges:
» Read and write access to the target device's devfs(5) entry
to send and receieve messages.
» Read and write access to the UNIX socket to read relay
requests and respond.
> Ability to send signals to a requesting process

> Write access to arbitrary shared memory regions

Security Models: Comparison

Support Per Security Model

As root POSIX capabilities | Pledge promises Capsicum
Device R/W Yes CAP_FOWNER unix Device pre-open
Socket R/W Yes CAP_FOWNER unix Socket pre-open
Signals Yes CAP_KILL proc Casper sub-process
Shared memory Yes CAP_IPC_OWNER No Casper sub-process

Privilege Silos

POSIX capabilities and pledge promsies are functionally very
different, but both mechanisms attempt to break up privileges into

subgroups.

Each subgroup is a collection of related calls that are grouped
together under a single security classification. You can think of

these groups as privilege silos.

Privilege Silos

POSIX capabilities pledge(2) promises
r N\ N N (N
CAP_NET_ADMIN CAP_SETUID inet id
* setuid(2)

+ administration of IP . setuid(2) + socket(2) + seteuid(2)
firewall, masquerading, . seteuid(2) + listen(2) + setreuid(2)
and accounting - setreuid(2) * bind(2) - setresuid(2)

* modify routing tables - setresuid(2) * connect(2) * setgid(2)

* bind to any address for - setfsuid(2) * accept4(2) + setegid(2)
transparent proxying - forge UID when passing + accept(2) + setregid(2)

+ set type-of-service socket credentials via + getpeername(2) - setresgid(2)

* clear driver statistics UNIX domain sockets * getsockname(2) * setgroups(2)

* set promiscuous mode - write a user ID mapping + setsockopt(2) (limited) + setlogin(2)

+ enabling multicasting in o user namespace - getsockopt(2) - setrlinit(2)

+ use setsockopt(2) for - getpriority(2)
SO_DEBUG, SO_MARK, - setpriority(2)
SO_PRIORITY, - setrtable(2)
SO_RCVBUFFORCE,

S0_SNDBUFFORCE

_ J_ J J Y,

If your program needs privileges from a silo, then it is forced to take
all other privileges in that silo, even if it doesn’t need them.

Capsicum Approach

There are no privilege silos like this in Capsicum. Instead, resource
acquisition is done in other ways.

Let's get into Capsicumization, or the process of reworking a
program to execute in a Capsicum capability sandbox.

Capsicumization

On systems that support Capsicum, a program may be sandboxed
using cap_enter(2):
#include <sys/capsicum.h>
#include <stdio.h>
int
main(void)
{
/* Enter Capsicum’s capability mode. */

cap_enter();
printf("Hello world from capability mode\n");

}

Once a program enters capability mode, it will not be able to
acquire new resources by itself.

For example, opening a file using open(2) will trigger a capability
violation, causing the call to to fail and set errno to ECAPMODE:
Not permitted in capability mode. ‘

Capsicum Resource Acquisition

Processes in capability mode can continue to use resources that
were acquired before cap_enter (2).

For this reason, the easiest form of Capsicumization is to open
required resources before entering the sandbox:

foofd = open("/home/jfree/foo", O_RDONLY);

cap_enter();

if (read(foofd, buf, sizeof(buf)) t= -1)
printf ("Success!\n");

Capsicum Resource Acquisition

Sometimes you don't know what you need before you enter the
sandbox.

If a program requires access to an unknown number of resources
that exist in a certain subdomain, then the openat(2), mkdirat(2),
bindat(2), and other *at() system calls may be useful:

dirfd = open("/home/jfree", 0_RDONLY | O_DIRECTORY);
cap_enter();
/* Open "/home/jfree/bar". */

if (openat(dirfd, "bar", O_RDONLY) !'= -1)
printf("Success\n");

Capsicum Resource Acquisition Restrictions

It is not possible to access resources outside of the subdirectory
domain provided by a relative reference though.

dirfd = open("/home/jfree", O_RDONLY | O_DIRECTORY);
cap_enter();

/* Open "/home/beastie". */
if (openat(dirfd, "../beastie", O_RDONLY) < 0)
printf("Failure\n");

Capsicum Pre-Opening

In short, pre-opening resources before doing cap_enter (2) will
allow your program to continue using them normally.

For simple programs, this is an effective approach to begin
Capsicumization.

Capsicum Pre-Opening Caveat

Pre-opening resources works great for programs that have
predictable resource requirements, but some programs require
resources on-demand.

In this case, the developer can opt to only sandbox specific parts of
their program.

Compartmentalization

Enter compartmentalization. If the entirety of a program will not
work in a sandbox, it may be possible to compartmentalize it.

Compartmentalization is the act of splitting a program up into
compartments, each with their own basic purpose.

With a compartmentalized architecture, a developer can keep
trusted code outside of the sandbox, but isolate insecure, or
dangerous, code inside of a sandboxed compartment. If a security
vulnerability is found in the dangerous code, it will be isolated.

&

Compartmentalization Example

syslogd

compartmentalization configuration

handling

(’> capability sandbox

message

user-provided
—> :
processing command execution

_ 5\

ttymsg / wallmsg

Compartmentalization

Capsicum provides an intuitive interface for sandboxing specific
parts of a program. At any point, a program can spawn a new child
process that executes dangerous code inside of capability mode.

Interprocess communication primitives like pipes and sockets can
allow data exchange without raising capability violations.

Compartmentalization Code Example

pid_t pid;
int pipefd[2], result;

pipe(pipefd);
/%
* Create a child process and isolate it in a capability
* sandbox where it can execute dangerous code.
*/
pid = fork();
if (pid == 0) {
close(pipefd[0]);
cap_enter();
result = dangerous_function();
write(pipefd[1], &result, sizeof(result));
exit(0);
}
close(pipefd[1]);
/* Fetch result from sandboxed child. */
result = read(pipefd[0], &result, sizeof(result));
printf("Result: %d\n", result);
/* Continue normal execution in parent. */

Compartmentalization

Most compartments will likely need some refactoring for capability
mode, but the developer can pick and choose what needs to be

sandboxed.

When done right, this is less work than sandboxing the entire
program, with a substantial increase in security.

Requesting Resources With libcasper(3)

Some programs were not designed to be compartmentalized.
Developers of these programs could rearchitect their software, but
this often requires a lot of time and resources.

Luckily, the libcasper(3) library assists developers that have
complex programs where compartmentalization is not effective.
Developers can use the interface provided by libcasper(3) to acquire
new resources while inside of the capability sandbox.

Using a Casper Service

Casper service libraries provide a simplified interface to execute
restricted operations in capability mode. To do this, the program
must open a communication channel with the service before
entering capability mode.

cap_channel_t *cap_casper, *cap_net;

/* Acquire the capability to access libcasper(3) services. */
cap_casper = cap_init();

/*

* Use the cap_casper capability to open a communication
* channel with the "system.net" casper service.

*/

cap_net = cap_service_open(cap_casper, "system.net");

/*

* We do not have any more casper services to open.
* Close the casper capability.

*/

cap_close(cap_casper);

Using a Casper Service

This channel can be used to request new resources from the casper
service inside of capability mode.

/%
* Enter capability mode.
*/

cap_enter();

/*

* Use the "cap_" variant of getaddrinfo(), provided by

* the cap_net(3) library.

*/

cap_getaddrinfo(cap_net, "freebsd.org", "80", NULL, &res);

s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

/*

*x Use the "cap_" variant of connect(), provided by
* the cap_net(3) library.

*/

cap_connect(cap_net, s, res->ai_addr, res->ai_addrlen);

Casper Diagram

sandboxed process

AN

casper

Channel between you and your casper process. You're essentially i
poking holes into your sandbox’s walls.

libcasper(3) Builtins

The cap_net(3) library uses libcasper(3) to provide
capability-enabled libc networking functions that would otherwise
fail with ECAPMODE.

Functions that use the 1ibcasper(3) interface are conventionally
prefixed with cap_ to indicate that they succeed inside of capability
mode.

There are several other casper service libraries available, similar to
cap_net(3), that provide cap_-prefixed libc functions. The full list
can be found on the libcasper(3) manual page.

Casper Services Under The Hood

When a sandboxed process wants a resource from a Casper process,
it can use cap_xfer_nvlist(3). This is what most Casper
services, like cap_net(3), call under the hood.

nvlist_t *
cap_xfer_nvlist(const cap_channel_t *chan, nvlist_t *nvl);

A command string and resources associated with the given
command must be wrapped in an nvlist(9) before being transferred.

&

Communicating with the Capser Service

/%
* Send the "bind" command to the casper service linked to @chan.
*/
static int
cap_bind(cap_channel_t *chan, int sockfd, const struct sockaddr *addr,
socklen_t addrlen)
{
nvlist_t *nvl = nvlist_create(0);
int error;

nvlist_add_string(nvl, "cmd", "bind");
nvlist_add_descriptor(avl, "sockfd", sockfd);
nvlist_add_binary(nvl, "addr", addr, addrlen);

nvl = cap_xfer_nvlist(chan, nvl);
if (nvl == NULL)

return (-1);

error = dup2(sockfd, nvlist_get_descriptor(nvl, "sockfd"));
nvlist_destroy(nvl);

return (error == -1 ? -1 : 0);

Command Strings

In the previous example, cap_bind(3) used the "bind" command
string and knew to pass a socket descriptor and sockaddr to the
Casper process.

How are developers expected to know every command string and
associated arguments? They're not!

On the other side of the channel, the Casper process will call its
command_func. See next slide.

command_func

/%
* The command function used by the cap_net(3) casper service
* library.
*/
static int
net_command(const char *cmd, const nvlist_t *limits, nvlist_t *nvlin,
nvlist_t *nvlout)
{
if (strcmp(emd, "bind") == 0)
return (net_bind(limits, nvlin, nvlout));
else if (strcmp(cmd, "connect") == 0)
return (net_connect(limits, nvlin, nvlout));
else if (strcmp(cmd, "gethostbyname") == 0)
return (net_gethostbyname(limits, nvlin, nvlout));
else if (strcmp(cmd, "gethostbyaddr") == 0)
return (net_gethostbyaddr(limits, nvlin, nvlout));
else if (strcmp(cmd, "getnameinfo") == 0)
return (net_getnameinfo(limits, nvlin, nvlout));
else if (strcmp(cmd, "getaddrinfo") == 0)
return (net_getaddrinfo(limits, nvlin, nvlout));

return (EINVAL);

Command Function Processing

The command function is responsible for parsing the command
string and providing the appropriate response.

typedef int service_command_func_t(const char *cmd,
const nvlist_t *1limits, nvlist_t *nvlin,
nvlist_t *nvlout);

1. cmd: the command string.
2. limits: an nvlist of limits applied to the service.

3. nvlin: copy of the nvlist passed into cap_xfer_nvlist(3)
without the command string.

4. nvlout: the nvlist returned to cap_xfer_nvlist(3).

CREATE_SERVICE(3)

That command_func can then be passed into the
CREATE_SERVICE(3) macro:

CREATE_SERVICE(name, limit_func, command_func, flags);
CREATE_SERVICE(3) establishes a new Casper service that will be

launched at program startup. For example, in cap_net (3):

CREATE_SERVICE("system.net", net_limit, net_command, 0);

&

Limiting a Casper Service

You may have noticed by now that Casper services are kind of like
privilege silos.

Opening a communication channel with a Casper service for a
singular purpose has the side effect of giving you access to all of
the privileges offered by that service.

For this reason, most service libraries define a limits API so
developers can disable functions that their program does not use.

cap_net(3) Limits

Use cap_net(3)’s limitations to disable everything except
for resolving the address of freebsd.org on port 80.

This assumes that the cap_net(3) service has already been
opened and is listening on Qcap_net.

*/

cap_net_limit_t *limit;

int familylimit;

/* Allow only name resolution (cap_getaddrinfo(3)). */
limit = cap_net_limit_init(cap_net, CAPNET_NAME2ADDR);

/* Limit name resolution to "freebsd.org" on port 80. */
cap_net_limit_name2addr(limit, "freebsd.org", "80");

/* Limit name resolution to IPv4 addresses. */
familylimit = AF_INET;
cap_net_limit_name2addr_family(limit, &familylimit, 1);

/* Apply the limits to cap_net. */
cap_net_limit(limit);

Custom Limits

Developers may specify a 1imit_func function pointer in
CREATE_SERVICE(3) to limit a service's interface.

When cap_limit_set(3) is called by a program, the provided
limits are redirected to the casper service's limit_func where they
are applied accordingly.

Limitation functions are naturally dependent on the service that
they limit, so there is no clear pattern to writing them. Examples
can be found in the FreeBSD source tree at
lib/libcasper/services.

Recap: Casper Service Components

A casper service is composed of four major components:

1. Functions prefixed with cap_ that issue commands to a casper
service using cap_xfer_nvlist(3).

2. A command_func that executes command-dependent code
outside of the sandbox and returns newly acquired resources.

3. A limit_func that restricts what the service can be used for.
4. A CREATE_SERVICE(3) macro that glues the service together.

Rewind To Example Problem

You may remember this table from earlier:

Support Per Security Model
As root POSIX capabilities | Pledge promises Capsicum
Device R/W Yes CAP_FOWNER unix Device pre-open
Socket R/W Yes CAP_FOWNER unix Socket pre-open
Signals Yes CAP_KILL proc Casper sub-process
Shared memory Yes CAP_IPC_OWNER No Casper sub-process

In the Capsicum column, | listed "Capsicum sub-process" as the
solution to "Signals" and "Shared memory". Given what you know
about Casper services, you can probably imagine the steps required
to create a service for these tasks.

Recap: Casper

Despite the rigidity of Casper services, they provide Capsicumized
programs a necessary way to acquire resources from outside of the

capability sandbox.

When used correctly, they can assist in sandboxing even the most
complex programs.

Detecting Violations

When a program is placed in capability mode, it is not always
obvious if it is following the rules of the sandbox.

Functions that try to open restricted resources will raise capability

violations and return with errno set to ECAPMODE: Not permitted
in capability mode.

Even with proper error checking, hunting down capability violations
can take a lot of time. Luckily, the ktrace(2) kernel tracing utility
can find violations for us.

Detecting Violations With ktrace(2)

Violation tracing using ktrace(2) can be started by adding two
function calls at the start of any program:

open("ktrace.out", O_RDONLY | O_CREAT | O_TRUNC);
ktrace("ktrace.out", KTROP_SET, KTRFAC_CAPFAIL, getpid());

The cap_violate routine, shown next, attempts to raise every type
of violation that ktrace(2) can capture. It is not important to
understand what the routine is doing, just that it raises capability
violations.

ktrace(2) Example

open("ktrace.out", O_RDONLY | O_CREAT | O_TRUNC);
ktrace("ktrace.out", KTROP_SET, KTRFAC_CAPFAIL, getpid());

cap_rights_init(&rights, CAP_READ);
caph_rights_limit (STDERR_FILENO, &rights);
write (STDERR_FILENQD, &val, sizeof(val));

cap_rights_set(&rights, CAP_WRITE);
caph_rights_limit (STDERR_FILENO, &rights);

kinf.kf_structsize = sizeof(struct kinfo_file);
fent1(STDIN_FILENO, F_KINFO, &kinf);

socket (AF_INET, SOCK_RAW, IPPROTO_ICMP);

addr.sin_family = AF_INET;
addr.sin_port = htons(5000);
addr.sin_addr.s_addr = INADDR_ANY;
bind(socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP),
(const struct sockaddr *)&addr, sizeof(addr));
sendto(fd, NULL, 0, 0, (const struct sockaddr *)&addr, sizeof (addr));

kill(getppid(), SIGCONT);
openat (AT_FDCWD, "/", O_RDONLY);
CPU_SET(0, &cpuset_mask);

cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, getppid(),
sizeof (cpuset_mask), &cpuset_mask);

ktrace(2) Dump Results

./cap
kdump
1915
1915
1915
1915
1915
1915
1915
1915
1915

_violate

cap_violate
cap_violate
cap_violate
cap_violate
cap_violate
cap_violate
cap_violate
cap_violate
cap_violate

operation requires CAP_WRITE, descriptor holds CAP_READ

attempt to increase capabilities from CAP_READ to CAP_READ,CAP_WRITE

system call not allowed: fcntl, cmd: F_KINFO

socket: protocol not allowed: IPPROTO_ICMP

system call not allowed: bind

sendto: restricted address lookup: struct sockaddr { AF_INET, 0.0.0.0:5000 }
kill: signal delivery not allowed: SIGCONT

openat: restricted VFS lookup: AT_FDCWD

cpuset_setaffinity: restricted cpuset operation

Recap: Tracing

Violation tracing is just another tool in the developer’s toolbox. It
only takes a few seconds to run a program under ktrace(2) and the
result is almost always a decent starting point for sandboxing your
program using Capsicum.

Overall Recap

Capability mode and all other security mechanisms mentioned in
this talk were designed to make programs safer.

Capability mode provides robust security by isolating a program
from the rest of the system.

If capability mode is properly integrated, a developer can rest
assured that their program is safer than it was before introducing
Capsicum.

Thank you for your attention!
ask questions

Sources and Extra Resources

» https://cdaemon.com/posts/capsicum
https://www.cl.cam.ac.uk/research/security/capsicum

> https://www.usenix.org/legacy/events/secl0/tech/full_
papers/Watson.pdf

» https://wiki.freebsd.org/Capsicum

https://cdaemon.com/posts/capsicum
https://www.cl.cam.ac.uk/research/security/capsicum
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Watson.pdf
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Watson.pdf
https://wiki.freebsd.org/Capsicum

