A distributed file system for
OpenBSD

BSDCan 2025

Agenda

What'’s the point / why does this / what does this do?
Existing alternatives and why they don't fit

FUSE

Elixir / BEAM

Consensus algorithms

Raft

Demo

Questions

What's the point / what does this do?

What's the point / what does this do?

Ensure files are distributed on all hosts .
No single point of failure -
All nodes have the same software and roles
Must work on OpenBSD

No serious performance concerns
o Single writer is fine

Alternatives

e s3fs+minio / ceph / seaweedfs
o Don’t work because of FUSE version or OS specifics

e Change of architecture
o Traditional separate cluster that exposes NFS

e Use a different operating system
o Run ceph or s3fs on top of vmnd

e I bioctl + iscsi + carp + nfs
o Does work; breaks “all nodes are the same”

Painful; Would not recommend; Works though

FUSE - Overview

e Stands for filesystem in user space
e Allows for programs to define filesystems
e Programs define functions for filesystem operations

o getattr
o mkdir
o unlink
o chmod
o ...etc
e Flexible.

e Not as performant as in-kernel systems

FUSE - Diagram

S
S Application
2 pp

FUSE file system
daemon

1

FUSE library

& S — ' E—

VES

ﬂ

P

2

=
z: 1
2 | Kermel-level
file systems

/dev/fuse

FUSE driver

|

Page cache

FUSE - OpenBSD

e Addedin5.4(2013)
e OpenBSD implementation conforms to FUSE version 2.6
e Some packages exist

o sshfs

m Mount a directory from a remote machine using ssh as the transport
o exfat

m The exfat filesystem
o unionfs

m Overlay directories into a single mount point; Top down check if file exists;
m Example utilizes unionfs and nfs - reminder that unionfs deals with directories

ERTS /BEAM / OTP / Erlang / Elixir

e ERTS is the Erlang Runtime System

o /0O, scheduling, memory management
o Networking, os signaling
o Aside: RunTime vs Runtime; Ericsson implementation

e BEAM is the virtual machine used with ERTS

o Register based
o Analogous to JVM in Java (for our purposes)

e OTP (Open Telecom Platform)

o Collection of libraries and applications that run on the BEAM VM / ERTS
o Applications like mnesia (a database), the erlang compiler, networking code, etc...
o Think JRE without the inclusion of the JVM.

e Erlang and Elixir
o The language. Others include Gleam, LFE (Lisp Flavoured Erlang), ...

ERTS /BEAM / OTP / Erlang / Elixir

Nodel Node2 Node3 Node4
Apps Apps Apps Apps
Elixir Elixir Elixir Elixir
OoTP OTP OoTP OoTP
BEAM BEAM BEAM BEAM
ERTS ERTS ERTS ERTS

0S 0S
HW or vM HW or vM
Network

(Section 1.3.2 from https://blog.stenmans.org/theBeamBook/)

https://blog.stenmans.org/theBeamBook/

For the purposes of this talk

Elixir Elixir

oTP oTP

pkg_add elixir-1.18.3

BEAM BEAM

ERTS ERTS

HW or VM

(Section 1.3.2 from https://blog.stenmans.org/theBeamBook/)

https://blog.stenmans.org/theBeamBook/

Ports and NIFs

e Ports
o Separate programs*
o Child process from the OS perspective
o Communicates in binary via async stdin/stdout
o Cannot crash the BEAM

o N

O O O O

IFs

Compiled and linked

Same process from the OS perspective
Synchronous communication

Can crash the BEAM

12

Consensus algorithms

Are not discovery mechanisms!

13

Consensus algorithms

e PhDs are written about this.
e Really roughly:

o “The process that is used to ensure that multiple independent systems agree”
e Nuanced and rich in details
Need to handle Byzantine fault (unpredictable or actively malicious behaviour)?
How quickly (in terms of number of messages) do you need the agreement to happen?
Do you need all systems to agree all the time?
What is the notion of time?
e There are many many different algorithms.
o Paxos
o Raft
o Crypto / DHTs / Blockchains - (Proof of Work, Stake, Burn, Capacity, ...)

o O O

(@)

14

Consensus algorithms - Crypto / DHTs / Blockchains

Same terminology of “consensus algorithm”

Designed for very large numbers of peers

Almost always public chains (anyone can join and use the algorithm)
Responsible for network (in the crypto sense) security

Mechanism that validates transactions

15

FLP “impossibility proof”

e Fischer-Lynch-Paterson paper from 1985.
e Relates to distributed consensus.

e A consensus algorithm can only satisfy two of:
o Safety (agreement/consistency)
o Liveness (termination)
o Fault tolerance
e \Very roughly effectively states that one of these is required:

o Failure detection (bounds on time)
o Eventual consistency (temporary divergence)

16

Paxos

e Tried and true

o Well studied (common in computer science curriculums)
o >25 year history. Conceived in 1989; Published 1998; “Paxos Made Simple” in 2001

e Guaranteed consistency
e High probability of reaching a decision
o “Provides engineering hints as to what to do to have a good probability of getting lucky”

e Used in many many systems
o ceph, google spanner, amazon dynamodb, xtreemfs, etc...

e COiriginal only a single decision/value

e Many different variants
o multi-paxos, byzantine-paxos, fast-paxos, etc...

17

Raft

Designed to be easy to understand

Has a “strong leader”

Guaranteed consistency

Exposes a replicated state machine (and log)

©)

©)

Interactions to it appear like a normal state machine
Any changes in state (setting a value) have consistency

e \ery popular

©)

etcd (thus also kubernetes), rabbitmq, kafka, clickhouse, hashicorp stack, etc...

18

Raft

/®Server (State Machine

Client Consensus X: 3
Module y: 9
z:0

[®& 8 = y
Log

X3 |y«1]|y<9|--

Raft

limes ou, receives votes from
startsup timesout, new election

starts election G /ma%/ of servers
Fo/lower) (Cand/dat@ (Leader)

_

discovers server
with higher term

discovers current
leader or new term

20

A few last notes on raft

e Compacting of logs @Q@
® Notion of terms

o One leader per term
e Defines the RPCs

o AppendEntries (also heartbeat)

o RequestVote

o InstallSnapshot (for very behind clients or new members)

21

Khepri

Replicated on-disk database library for Elixir
Developed by the RabbitMQ team
Specifically to transition away from mnesia
Behind a feature flag in current stable
Stores the entire contents in memory as well

=

22

Khepri

e Storage has bunch of options
o WAL sizes, entries, etc
o Write strategies

e Export and import functionality

=

23

Khepri

Tree like structure

Basic put / get / delete functions
Transaction support

Triggers / stored procedures

=

24

Pulling it all together

e Three OpenBSD nodes
e Each node runs an Elixir application and the same code

e Nodes can find each other (discovery mechanism)
o static
o libcluster

e Khepriis started and a cluster is formed

e A C program is started from Elixir
o fuse_main() is called within the port

25

Pulling it all together

e Single port based package
efuse (efuse and userfs)
Modifications to Makefile, include paths, etc.
Fix buffer overread and segfaulting for read
Implemented the open() call
Thanks for the people who maintain ktrace and kdump
e Created fuse_nif

o Uses rustler

o Ran out of time

e “Make it work”

O O O O O

26

https://github.com/mwri/erlang-efuse
https://github.com/mwri/elixir-userfs
https://github.com/robertkeizer/fuse_nif

Demo

27

https://docs.google.com/file/d/199HxjRFr1MEjMjQ5OxMuOUqaRyeQbusI/preview

Things on the todo list

e Rewrite Elixir port

o Include write path

o Add security and drop permissions (ie pledge, separation of BEAM instances)
e Look at using ra directly instead of khepri

o Duplication of information in memory
e Use the existing filesystem for actual storage

o Instead of storing in a format that internal to elixir (DETs out of RA)

o Could provide for dirty reads
o Easy to integrate existing backup mechanisms

e Bump the fuse version

28

That's it — thanks!

Questions / Comments / Heckles

