
A distributed file system for
OpenBSD

BSDCan 2025

Agenda

● What’s the point / why does this / what does this do?
● Existing alternatives and why they don’t fit
● FUSE
● Elixir / BEAM
● Consensus algorithms
● Raft
● Demo
● Questions

2

What’s the point / what does this do?

3

What’s the point / what does this do?

● Ensure files are distributed on all hosts
● No single point of failure
● All nodes have the same software and roles
● Must work on OpenBSD
● No serious performance concerns

○ Single writer is fine

4

Alternatives

● s3fs+minio / ceph / seaweedfs
○ Don’t work because of FUSE version or OS specifics

● Change of architecture
○ Traditional separate cluster that exposes NFS

● Use a different operating system
○ Run ceph or s3fs on top of vmd

● bioctl + iscsi + carp + nfs
○ Does work; breaks “all nodes are the same”

5
Painful; Would not recommend; Works though

FUSE - Overview

● Stands for filesystem in user space
● Allows for programs to define filesystems
● Programs define functions for filesystem operations

○ getattr
○ mkdir
○ unlink
○ chmod
○ … etc

● Flexible.
● Not as performant as in-kernel systems

6

FUSE - Diagram

7

FUSE - OpenBSD

● Added in 5.4 (2013)
● OpenBSD implementation conforms to FUSE version 2.6
● Some packages exist

○ sshfs
■ Mount a directory from a remote machine using ssh as the transport

○ exfat
■ The exfat filesystem

○ unionfs
■ Overlay directories into a single mount point; Top down check if file exists;
■ Example utilizes unionfs and nfs - reminder that unionfs deals with directories

8

ERTS / BEAM / OTP / Erlang / Elixir

● ERTS is the Erlang Runtime System
○ I/O, scheduling, memory management
○ Networking, os signaling
○ Aside: RunTime vs Runtime; Ericsson implementation

● BEAM is the virtual machine used with ERTS
○ Register based
○ Analogous to JVM in Java (for our purposes)

● OTP (Open Telecom Platform)
○ Collection of libraries and applications that run on the BEAM VM / ERTS
○ Applications like mnesia (a database), the erlang compiler, networking code, etc…
○ Think JRE without the inclusion of the JVM.

● Erlang and Elixir
○ The language. Others include Gleam, LFE (Lisp Flavoured Erlang), …

9

ERTS / BEAM / OTP / Erlang / Elixir

(Section 1.3.2 from https://blog.stenmans.org/theBeamBook/)
10

https://blog.stenmans.org/theBeamBook/

For the purposes of this talk

(Section 1.3.2 from https://blog.stenmans.org/theBeamBook/)

pkg_add elixir-1.18.3

11

https://blog.stenmans.org/theBeamBook/

Ports and NIFs

● Ports
○ Separate programs*
○ Child process from the OS perspective
○ Communicates in binary via async stdin/stdout
○ Cannot crash the BEAM

● NIFs
○ Compiled and linked
○ Same process from the OS perspective
○ Synchronous communication
○ Can crash the BEAM

12

Consensus algorithms

Are not discovery mechanisms!

13

Consensus algorithms

● PhDs are written about this.
● Really roughly:

○ “The process that is used to ensure that multiple independent systems agree”
● Nuanced and rich in details

○ Need to handle Byzantine fault (unpredictable or actively malicious behaviour)?
○ How quickly (in terms of number of messages) do you need the agreement to happen?
○ Do you need all systems to agree all the time?
○ What is the notion of time?

● There are many many different algorithms.
○ Paxos
○ Raft
○ Crypto / DHTs / Blockchains - (Proof of Work, Stake, Burn, Capacity, …)

14

Consensus algorithms - Crypto / DHTs / Blockchains

● Same terminology of “consensus algorithm”
● Designed for very large numbers of peers
● Almost always public chains (anyone can join and use the algorithm)
● Responsible for network (in the crypto sense) security
● Mechanism that validates transactions

15

FLP “impossibility proof”

● Fischer-Lynch-Paterson paper from 1985.
● Relates to distributed consensus.
● A consensus algorithm can only satisfy two of:

○ Safety (agreement/consistency)
○ Liveness (termination)
○ Fault tolerance

● Very roughly effectively states that one of these is required:
○ Failure detection (bounds on time)
○ Eventual consistency (temporary divergence)

16

Paxos

● Tried and true
○ Well studied (common in computer science curriculums)
○ >25 year history. Conceived in 1989; Published 1998; “Paxos Made Simple” in 2001

● Guaranteed consistency
● High probability of reaching a decision

○ “Provides engineering hints as to what to do to have a good probability of getting lucky”
● Used in many many systems

○ ceph, google spanner, amazon dynamodb, xtreemfs, etc…
● Original only a single decision/value
● Many different variants

○ multi-paxos, byzantine-paxos, fast-paxos, etc…

17

● Designed to be easy to understand
● Has a “strong leader”
● Guaranteed consistency
● Exposes a replicated state machine (and log)

○ Interactions to it appear like a normal state machine
○ Any changes in state (setting a value) have consistency

● Very popular
○ etcd (thus also kubernetes), rabbitmq, kafka, clickhouse, hashicorp stack, etc…

Raft

18

Raft

19

Raft

20

● Compacting of logs
● Notion of terms

○ One leader per term
● Defines the RPCs

○ AppendEntries (also heartbeat)
○ RequestVote
○ InstallSnapshot (for very behind clients or new members)

A few last notes on raft

21

Khepri

● Replicated on-disk database library for Elixir
● Developed by the RabbitMQ team
● Specifically to transition away from mnesia
● Behind a feature flag in current stable
● Stores the entire contents in memory as well

22

Khepri

● Storage has bunch of options
○ WAL sizes, entries, etc
○ Write strategies

● Export and import functionality

23

Khepri

● Tree like structure
● Basic put / get / delete functions
● Transaction support
● Triggers / stored procedures

24

Pulling it all together

● Three OpenBSD nodes
● Each node runs an Elixir application and the same code
● Nodes can find each other (discovery mechanism)

○ static
○ libcluster

● Khepri is started and a cluster is formed
● A C program is started from Elixir

○ fuse_main() is called within the port

25

Pulling it all together

● Single port based package
○ efuse (efuse and userfs)
○ Modifications to Makefile, include paths, etc.
○ Fix buffer overread and segfaulting for read
○ Implemented the open() call
○ Thanks for the people who maintain ktrace and kdump

● Created fuse_nif
○ Uses rustler
○ Ran out of time

● “Make it work”

26

https://github.com/mwri/erlang-efuse
https://github.com/mwri/elixir-userfs
https://github.com/robertkeizer/fuse_nif

Demo

27

https://docs.google.com/file/d/199HxjRFr1MEjMjQ5OxMuOUqaRyeQbusI/preview

Things on the todo list

● Rewrite Elixir port
○ Include write path
○ Add security and drop permissions (ie pledge, separation of BEAM instances)

● Look at using ra directly instead of khepri
○ Duplication of information in memory

● Use the existing filesystem for actual storage
○ Instead of storing in a format that internal to elixir (DETs out of RA)
○ Could provide for dirty reads
○ Easy to integrate existing backup mechanisms

● Bump the fuse version

28

That’s it — thanks!
Questions / Comments / Heckles

