
Vox FreeBSD: How sound(4) works

Christos Margiolis
christos@FreeBSD.org

June 14, 2025
BSDCan 2025 — Ottawa, Canada





Who?

▶ FreeBSD committer.

▶ The guy who keeps churning out sound bugs.



Contents

▶ How does sound travel from application to the real world (and
vice versa)?

▶ Layers: userland, sound(4), device drivers.

▶ New improvements.

▶ FreeBSD for music and audio production?



Userland

proc0 proc1 proc2

/dev/dsp0 /dev/dsp1

sound(4)

Driver

Sound card

Microphone Speakers



Userland

Interacts with sound(4) through the Open Sound System (OSS)
API, using a few basic syscalls on /dev/dsp* and /dev/mixer*

character devices:

open(2) Open device, obviously...

close(2) Close device.

read(2) Record audio.

write(2) Play audio.

ioctl(2) Query and manipulate settings (sam-
ple rate, format, volume, ...).

select(2) & poll(2) Wait for events when in non-blocking
mode.

mmap(2) Direct IO with the sound card. Dis-
couraged.

http://manuals.opensound.com/developer/

http://manuals.opensound.com/developer/open.html
http://manuals.opensound.com/developer/close.html
http://manuals.opensound.com/developer/read.html
http://manuals.opensound.com/developer/write.html
http://manuals.opensound.com/developer/ioctl.html
http://manuals.opensound.com/developer/select.html
http://manuals.opensound.com/developer/mmap.html
http://manuals.opensound.com/developer/


Basic audio loopback program
#include <sys/soundcard.h>

#include <fcntl.h>

#include <unistd.h>

int

main(int argc, char *argv[])

{

uint32_t sample;

int fd, fmt, chans, rate;

/* No error checking. */

fd = open("/dev/dsp", O_RDWR);

chans = 1;

ioctl(fd, SNDCTL_DSP_CHANNELS, &chans);

fmt = AFMT_S16_LE;

ioctl(fd, SNDCTL_DSP_SETFMT, &fmt);

rate = 48000;

ioctl(fd, SNDCTL_DSP_SPEED, &rate);

for (;;) {

read(fd, &sample, sizeof(sample));

write(fd, &sample, sizeof(sample));

}

close(fd);

return (0);

}



sound(4)

proc0 proc1 proc2

/dev/dsp0 /dev/dsp1

sound(4)

Driver

Sound card

Microphone Speakers



sound(4)

▶ You might have also seen it mentioned as pcm.

▶ Generic layer.

▶ Implements the OSS API.

▶ Exposes devices and their mixers as character devices:
/dev/dsp*, /dev/mixer*

▶ Handles channels and buffers.

▶ Processing chain.

▶ sysctls: hw.snd.*, dev.pcm.*

▶ /dev/sndstat



sound(4): /dev/dsp*

▶ Access for playback and/or recording.

▶ Uses DEVFS_CDEVPRIV(9).

▶ There is also /dev/dsp which routes to the default device
(hw.snd.default_unit).

proc0 proc1 proc2

/dev/dsp0

dsp_cdevpriv dsp_cdevpriv dsp_cdevpriv

dsp0.

virtual_rec.0

dsp0.

virtual_rec.1

dsp0.

virtual_play.0

dsp0.

virtual_play.1

dsp0.rec.0 dsp.play.0

Driver



sound(4): /dev/mixer*

▶ Mainly used for volume, (un-)muting, and recording source
setting.

▶ Theoretically not really needed anymore since OSSv4, but we
still use it.

▶ Used by mixer(8) through mixer(3).



sound(4): /dev/sndstat

▶ Information about attached sound devices.

▶ Also provides an nv(9) interface. Used by sndctl(8) (more
on that later), virtual_oss(8), ...

▶ hw.snd.verbose



sound(4): Channels

▶ Primary (”hardware”) channels.

▶ Virtual channels (VCHANs). Can be disabled.

Channel

Primary (”hard-
ware”) buffer

Secondary (”soft-
ware”) buffer

Driver sound(4)

Hardware Userland



sound(4): Processing chain

▶ Sample rate & format conversions, equalizer, multi-channel
mixing, channel matrixing, volume control.

▶ Each channel gets its own chain during creation.

▶ Triggered by the driver: chn_intr().

▶ sndctl feederchain



sound(4): Reducing latency

▶ Disable VCHANs: sndctl play.vchans=0 rec.vchans=0

▶ Skip processing (bitperfect): sndctl bitperfect=1

▶ Shorthand: sndctl realtime=1 autoconv=0

▶ hw.snd.latency

▶ More sysctls, including the driver-specific ones...

▶ mac_priority(4) and rtprio(1).

▶ Florian Walpen’s notes on low latency with JACK:
https://www.submerge.ch/FreeBSD/freebsd jack notes/index.html

https://www.submerge.ch/FreeBSD/freebsd_jack_notes/index.html


Device drivers

proc0 proc1 proc2

/dev/dsp0 /dev/dsp1

sound(4)

Driver

Sound card

Microphone Speakers



Device drivers

▶ Communication layer between sound(4) and the sound card.

▶ Implement the sound(4) kernel object interfaces.

▶ snd_uaudio(4), snd_hda(4), snd_hdsp(4), ...

▶ Also a testing driver: snd_dummy(4).

▶ Some implement their own sysctls as well (e.g.,
hw.usb.uaudio, dev.hdaa, ...).



Device drivers: Setting up

▶ Initialize driver-internal resources (locks, DMA, USB, PCI,
callouts, ...).

▶ Implement the channel_if.m and mixer_if.m methods.

▶ Create primary channels: pcm_addchan().

▶ Register to sound(4): pcm_init(), pcm_register().

▶ Create the mixer: mixer_init().

▶ See sys/dev/sound/dummy.c.



Hardware

proc0 proc1 proc2

/dev/dsp0 /dev/dsp1

sound(4)

Driver

Sound card

Microphone Speakers

This is not a hardware talk...



New improvements

▶ Better laptop support.
▶ https://reviews.freebsd.org/D50070

▶ New tools: sndctl(8), mididump(1).

▶ Hot-unplug.

▶ Bug fixes.

▶ Clean ups and refactors.

▶ Tests.

▶ AFMT_FLOAT support.

▶ Took over development of virtual_oss(8).

▶ More...

https://reviews.freebsd.org/D50070


FreeBSD for music production?

▶ Yes. There are people who do this thing (me).

▶ Solid and fast sound system.

▶ Good and growing collection of DAWs and LV2 ports.



Acknowledgements

Ed Maste <emaste@FreeBSD.org>

Florian Walpen <dev@submerge.ch>

Goran Mekić <meka@tilda.center>



Thank you.


