

Implementing Routing Domains on
an OpenBSD workstation for use

with WireGuard

Josh Grosse
BSDCan 2024

Who is this presenter?

● OpenBSD user for more than 20 years

– Port maintainer for a handful of third party packages

– OpenBSD fan / hobbyist

– Active participant at DaemonForums.org (user “jggimi”)

● IT professional since 1977

– Applications programmer

– Systems programmer (“sysadmin”)

– Systems engineer

– Manager (Product, Marketing, International Ops, M&A Contracts)

Agenda

● Background

– VPNs in general

– WireGuard in particular

● WireGuard Years 1-2: Routing by Priority

– Automatic, worked well

– All-or-nothing, on or off

● WireGuard Years 3-5: Routing by Domains

– Technique recommended by Solène Rapenne (solene@)

– Default: use the VPN

– Optional: do not use the VPN

VPNs: Virtual Private Networks

By Michel Bakni - Derived from files [1], [2] and [3].Dulaney, Emmett (2009)
CompTIA Security+ Deluxe Study Guide, Wiley Publishing, Inc., p. 124
ISBN: 9780470372968., CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=84020759

Peer Peer

“VPNs route private traffic over public networks.”

VPN Implementations

Userland

● OpenVPN is a common
example

● An application runs on the
OS, acting as the transport
facility between real and
virtual networks

● The application may
manage routing

● A tun(4) or similar pseudo-
device may be used for
communication

Kernel

● IPSec is a common example

● The kernel acts as the
transport facility between
the real and virtual
networks

● The kernel manages routing

Why WireGuard?

● A relatively recent VPN technology (ca. 2016)

● Physical transport is via UDP

● Simple to provision and deploy

● Variety of OS implementations

● A kernel implementation on OpenBSD

– Provisioned through the wg(4) pseudo-device driver

– Familiar mechanism: there are 34 pseudo-device drivers on OpenBSD

● trunk(4), carp(4), vlan(4), bridge(4)...

● Peer-to-Peer

– Point-to-point, mesh, star (client / server)

– IPv4 or IPv6 or a blended deployment

● Either version may transport either

WireGuard uses well-regarded
cryptographic primitives and protocols

Yay! (or, warning!)
WireGuard uses simplified key management

● No certificates

– No expirations

– No renewals

– No revocations – compromised keys must be changed manually

● All keys are 32 bytes long
● Private keys are encoded in Base64 ASCII
● Public* keys are derived automatically
● Optional pre-shared keys for “limited non-forward secret post-

quantum resistance” in key exchanges

● Many third-party admin tools are available

– Geared for larger deployments, and never tested by me

* Operationally always treat WireGuard public keys as private. Identity hiding is a cryptographic requirement.

Typical wg(4) provisioning

* Operationally always treat WireGuard public keys as private. Identity hiding is a cryptographic requirement.

$* cat /etc/hostname.wg0

wgkey <this private key>
wgpeer <that public* key> wgaip <ip block> wgaip <ip block>
wgpeer <that public* key> wgendpoint <ip> <port>
wgpeer <that public* key> wgpsk <pre-shared key>
inet 192.168.99.3/24
inet6 fd00::3/64

Note the private network addresses, RFC1918 and ULA

What’s this machine’s public* key?

ifconfig wg0 | grep pub

wgpubkey <this public key>

Agenda

● Background

– VPNs in general

– WireGuard in particular

● WireGuard Years 1-2: Routing by Priority

– Automatic, worked well

– All-or-nothing, on or off

● WireGuard Years 3-5: Routing by Domains

– Technique recommended by Solène Rapenne (solene@)

– Default: use the VPN

– Optional: do not use the VPN

WireGuard Years 1-2: Routing by Priority

● Deployment decisions

– Based upon my perceived requirements

● What I thought I needed
● How I thought it would function

– Informed by limited experiences

● Prior routing experience

– I’d used # route add
– I could describe “next hop” routing concepts

● Prior VPN deployment experience

– Several years of IPSec point-to-point
– A week of OpenVPN “testing” ca. 2003
– End user of a dozen corporate VPN userland clients

“VPNs route private traffic over public networks.”

My perceived needs

Requirements:

● A default route over the
VPN

● A backup default route
when the VPN was not
available – by intent or by
accident

● A specific route to the
remote endpoint through
the public network – to
operate the VPN

“VPNs route private traffic over public networks.”

Routing by priority

● Whenever two routes are both operational, the route with the
highest priority gets used:

– 12: Low priority routes: default routes on the physical network.

– 7: Medium priority routes: default routes using the VPN.

– 2: High priority route: physical route to the remote server.

● Simple implementation:

– Include -priority <n> on # route add commands

– Can be provisioned either in hostname.if(5) or in rc.local(8)

– Turn VPN off with # ifconfig wg0 down

– Turn VPN on with # ifconfig wg0 up

Provisioning priority routing

● The lower the -priority number ... the higher the priority

● Auto-configured default routes are currently set to -priority 8

$ cat /etc/rc.local (circa 2021)

[this peer 192.168.99.3 / ff0d::3] – [gateway peer 192.168.99.1 / ff0d::1]

route add -priority 7 default 192.168.99.1
route add -priority 7 -inet6 default fd00::1
route add -priority 2 <real peer endpoint> <real next hop>

Agenda

● Background

– VPNs in general

– WireGuard in particular

● WireGuard Years 1-2: Routing by Priority

– Automatic, worked well

– All-or-nothing, on or off

● WireGuard Years 3-5: Routing by Domains

– Technique recommended by Solène Rapenne (solene@)

– Default: use the VPN

– Optional: do not use the VPN

Solène Rapenne’s Guide:

 “Full WireGuard setup with OpenBSD”

https://dataswamp.org/~solene/2021-10-09-openbsd-wireguard-exit.html

“Some have seen further by standing upon the shoulders of giants.
I was able to see further, because solene@ opened my eyes.”

https://dataswamp.org/~solene/2021-10-09-openbsd-wireguard-exit.html

WireGuard Years 3-5: Routing by Domains

● Why switch?

– I’d read solene@’s guide, and foresaw benefits

● Application granularity
● Know when the VPN was down

● How?

– The VPN uses the default routing domain – rdomain 0 / rtable 0

● All processes use rdomain 0 by default

– The physical network uses rdomain 1 / rtable 1

● Anything that need the real network must be run from rdomain 1

– Process-level assurance of the network in use

– The parent process and all of its children are fixed to a single routing domain

– Switching domains means restarting the application

“VPNs route private traffic over public networks.”

Route decision is made at process start

$ firefox

$ novpn chrome

$ cat ~/bin/novpn

#!/bin/sh
route -T 1 exec $@

● Shell script rather than an alias – for simplified WM provisioning

Provisioning rdomain 1 / rtable 1 (part 1)

● Put the egress NIC in rdomain 1
(my egress NIC happens to be a trunk(4) pseudo-device)

$ cat /etc/hostname.trunk0

rdomain 1
trunkproto failover
trunkport em0
trunkport iwm0
inet autoconf
inet6 autoconf

– The trunkport devices are also in rdomain 1

e.g.: $ cat /etc/hostname.em0

rdomain 1
up

Provisioning rdomain 1 / rtable 1 (part B)
● Loopback for rdomain 1 / rtable 1

$ cat /etc/hostname.lo1

rdomain 1
inet 127.0.0.1/8
inet6 ::1/128

● Add a wgrtable directive

cat /etc/hostname.wg0

wgkey …
… wgrtable 1 ...
inet 192.168.99.3/24
inet6 fd00::3/64
!route add default 192.168.99.1
!route add -inet6 default fd00::1

From ifconfig(8) for “wgrtable <rtable>”

“Exchange traffic with peers under the routing table <rtable>, instead of the default…. [It] needn't be the
routing domain to which the interface is attached, in which the interface's tunneled traffic appears.”

The default routing table: rtable 0

$ netstat -nrf inet
Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Prio Iface
default 192.168.99.1 UGS 0 312 - 8 wg0
127/8 127.0.0.1 UGRS 0 0 32768 8 lo0
127.0.0.1 127.0.0.1 UHhl 3 466 32768 1 lo0
192.168.99/24 192.168.99.3 UCn 1 0 - 4 wg0
192.168.99.1 link#0 UHch 1 3 - 3 wg0
192.168.99.3 wg0 UHl 0 103 - 1 wg0
192.168.99.255 192.168.99.3 UHb 0 0 - 1 wg0

The physical routing table: rtable 1

$ netstat -T 1 -nrf inet
Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Prio Iface
default 10.0.1.1 UGS 7 14590 - 8 trunk0
10.0.1/24 10.0.1.130 UCn 2 836 - 4 trunk0
10.0.1.1 00:00:5e:00:01:01 UHLch 1 743 - 3 trunk0
10.0.1.130 50:7b:9d:3b:16:ca UHLl 0 44615 - 1 trunk0
10.0.1.254 00:0d:b9:2f:9a:7c UHLc 1 588 - 3 trunk0
10.0.1.255 10.0.1.130 UHb 0 0 - 1 trunk0
100.64.3.2/31 100.64.3.2 UCn 0 0 - 4 vport0
100.64.3.2 fe:e1:ba:d0:16:86 UHLl 0 0 - 1 vport0
127.0.0.1 127.0.0.1 UHl 1 7592 32768 1 lo1

Guest VMs use rdomain 1 / rtable 1

grep domain /etc/pf.conf
nat guest VMs to the appropriate egress by routing domain
pass out on rdomain 1 from 100.64.0.0/10 to any rtable 1 nat-to ($ext)
pass in on rdomain 1 from 100.64.0.0/10 to (self) rtable 1
redirect guest domain requests to unwind(8)
pass in proto { tcp udp } from 100.64.0.0/10 to any port domain rdr-to localhost

I use two instances of unwind(8)

$ ls -l /etc/rc.d/unwind*
-r-xr-xr-x 1 root wheel 256 May 15 14:41 /etc/rc.d/unwind
lrwxr-xr-x 1 root wheel 6 Sep 29 2023 /etc/rc.d/unwind1 -> unwind

$ grep unwind /etc/rc.conf.local
pkg_scripts=unwind1 …
unwind1_flags=-s /dev/unwind1.sock
unwind1_rtable=1
unwind_flags=

Final thoughts on WireGuard

● You are the architect of your own VPN topology.

– My VPN is both “mesh” and “star”

● Mesh: communication between servers
● Star: workstations / mobile → Internet gateway
● 6 platforms: OpenBSD, Android, Windows

● The allowed IP blocks: “wgaip”

– Filter packets: by source IP address on incoming tunneled packets

– At least one address or block is required

– Can be ::0/0 or 0.0.0.0/0 (“do not filter packets”)

Questions?

Permission to use image from https://reverse.mortgage/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

