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Who is this presenter?

● OpenBSD user for more than 20 years

– Port maintainer for a handful of third party packages

– OpenBSD fan / hobbyist

– Active participant at DaemonForums.org  (user “jggimi”)

● IT professional since 1977

– Applications programmer

– Systems programmer (“sysadmin”)

– Systems engineer

– Manager (Product, Marketing, International Ops, M&A Contracts)



  

Agenda

● Background

– VPNs in general

– WireGuard in particular

● WireGuard Years 1-2: Routing by Priority

– Automatic, worked well

– All-or-nothing, on or off

● WireGuard Years 3-5: Routing by Domains

– Technique recommended by Solène Rapenne (solene@)

– Default: use the VPN

– Optional: do not use the VPN



  

VPNs: Virtual Private Networks

By Michel Bakni - Derived from files [1], [2] and [3].Dulaney, Emmett (2009)
CompTIA Security+ Deluxe Study Guide, Wiley Publishing, Inc., p. 124 
ISBN: 9780470372968., CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=84020759

Peer Peer

“VPNs route private traffic over public networks.”



  

VPN Implementations

Userland

● OpenVPN is a common 
example

● An application runs on the 
OS, acting as the transport 
facility between real and 
virtual networks

● The application may 
manage routing

● A tun(4) or similar pseudo-
device may be used for 
communication

Kernel

● IPSec is a common example

● The kernel acts as the 
transport facility between 
the real and virtual 
networks

● The kernel manages routing



  

Why WireGuard?

● A relatively recent VPN technology (ca. 2016)

● Physical transport is via UDP

● Simple to provision and deploy

● Variety of OS implementations

● A kernel implementation on OpenBSD

– Provisioned through the wg(4) pseudo-device driver

– Familiar mechanism: there are 34 pseudo-device drivers on OpenBSD

● trunk(4), carp(4), vlan(4), bridge(4)...

● Peer-to-Peer

– Point-to-point, mesh, star (client / server) 

– IPv4 or IPv6 or a blended deployment

● Either version may transport either



  

WireGuard uses well-regarded 
cryptographic primitives and protocols



  

Yay!  (or, warning!)
WireGuard uses simplified key management

● No certificates

– No expirations

– No renewals

– No revocations – compromised keys must be changed manually

● All keys are 32 bytes long
● Private keys are encoded in Base64 ASCII
● Public* keys are derived automatically
● Optional pre-shared keys for “limited non-forward secret post-

quantum resistance” in key exchanges

● Many third-party admin tools are available

– Geared for larger deployments, and never tested by me

* Operationally always treat WireGuard public keys as private.  Identity hiding is a cryptographic requirement.



  

Typical wg(4) provisioning

* Operationally always treat WireGuard public keys as private.  Identity hiding is a cryptographic requirement.

$* cat /etc/hostname.wg0

wgkey <this private key>
wgpeer <that public* key> wgaip <ip block> wgaip <ip block>
wgpeer <that public* key> wgendpoint <ip> <port>
wgpeer <that public* key> wgpsk <pre-shared key>
inet 192.168.99.3/24
inet6 fd00::3/64

Note the private network addresses, RFC1918 and ULA

What’s this machine’s public* key?

# ifconfig wg0 | grep pub

wgpubkey <this public key>
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WireGuard Years 1-2: Routing by Priority

● Deployment decisions

– Based upon my perceived requirements

● What I thought I needed
● How I thought it would function

– Informed by limited experiences

● Prior routing experience

– I’d used # route add
– I could describe “next hop” routing concepts

● Prior VPN deployment experience

– Several years of IPSec point-to-point 
– A week of OpenVPN “testing” ca. 2003
– End user of a dozen corporate VPN userland clients

“VPNs route private traffic over public networks.”



  

My perceived needs

Requirements:

● A default route over the 
VPN

● A backup default route 
when the VPN was not 
available – by intent or by 
accident

● A specific route to the 
remote endpoint through 
the public network – to 
operate the VPN

“VPNs route private traffic over public networks.”



  

Routing by priority 

● Whenever two routes are both operational, the route with the 
highest priority gets used:

– 12: Low priority routes: default routes on the physical network.

– 7: Medium priority routes: default routes using the VPN.

– 2: High priority route: physical route to the remote server.

● Simple implementation:

– Include -priority <n> on # route add commands

– Can be provisioned either in hostname.if(5) or in rc.local(8)

– Turn VPN off with # ifconfig wg0 down

– Turn VPN on with # ifconfig wg0 up



  

Provisioning priority routing

● The lower the -priority number ... the higher the priority

● Auto-configured default routes are currently set to -priority 8

$ cat /etc/rc.local  (circa 2021)

# [this peer 192.168.99.3 / ff0d::3] – [gateway peer 192.168.99.1 / ff0d::1]

route add -priority 7 default 192.168.99.1
route add -priority 7 -inet6 default fd00::1
route add -priority 2 <real peer endpoint> <real next hop>
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Solène Rapenne’s Guide:

                      “Full WireGuard setup with OpenBSD”

https://dataswamp.org/~solene/2021-10-09-openbsd-wireguard-exit.html

“Some have seen further by standing upon the shoulders of giants.
I was able to see further, because solene@ opened my eyes.”

https://dataswamp.org/~solene/2021-10-09-openbsd-wireguard-exit.html


  

WireGuard Years 3-5: Routing by Domains

● Why switch? 

– I’d read solene@’s guide, and foresaw benefits

● Application granularity
● Know when the VPN was down

● How?

– The VPN uses the default routing domain – rdomain 0 / rtable 0

● All processes use rdomain 0 by default

– The physical network uses rdomain 1 / rtable 1

● Anything that need the real network must be run from rdomain 1

– Process-level assurance of the network in use

– The parent process and all of its children are fixed to a single routing domain

– Switching domains means restarting the application

“VPNs route private traffic over public networks.”



  

Route decision is made at process start

$ firefox

$ novpn chrome

$ cat ~/bin/novpn

#!/bin/sh
route -T 1 exec $@

● Shell script rather than an alias – for simplified WM provisioning



  

Provisioning rdomain 1 / rtable 1 (part 1)

● Put the egress NIC in rdomain 1
(my egress NIC happens to be a trunk(4) pseudo-device)

$ cat /etc/hostname.trunk0

rdomain 1
trunkproto failover
trunkport em0
trunkport iwm0
inet autoconf
inet6 autoconf

– The trunkport devices are also in rdomain 1

e.g.: $ cat /etc/hostname.em0

rdomain 1
up



  

Provisioning rdomain 1 / rtable 1 (part B)
● Loopback for rdomain 1 / rtable 1

$ cat /etc/hostname.lo1

rdomain 1
inet 127.0.0.1/8
inet6 ::1/128

● Add a wgrtable directive

# cat /etc/hostname.wg0

wgkey …
… wgrtable 1 ...
inet 192.168.99.3/24
inet6 fd00::3/64
!route add default 192.168.99.1
!route add -inet6 default fd00::1

From ifconfig(8) for “wgrtable <rtable>”

“Exchange traffic with peers under the routing table <rtable>, instead of the default…. [It] needn't be the 
routing domain to which the interface is attached, in which the interface's tunneled traffic appears.”



  

The default routing table: rtable 0

$ netstat -nrf inet
Routing tables

Internet:
Destination        Gateway            Flags   Refs      Use   Mtu  Prio Iface
default            192.168.99.1       UGS        0      312     -     8 wg0  
127/8              127.0.0.1          UGRS       0        0 32768     8 lo0  
127.0.0.1          127.0.0.1          UHhl       3      466 32768     1 lo0  
192.168.99/24      192.168.99.3       UCn        1        0     -     4 wg0  
192.168.99.1       link#0             UHch       1        3     -     3 wg0  
192.168.99.3       wg0                UHl        0      103     -     1 wg0  
192.168.99.255     192.168.99.3       UHb        0        0     -     1 wg0



  

The physical routing table: rtable 1

$ netstat -T 1 -nrf inet
Routing tables

Internet:
Destination        Gateway            Flags   Refs      Use   Mtu  Prio Iface
default            10.0.1.1           UGS        7    14590     -     8 trunk0
10.0.1/24          10.0.1.130         UCn        2      836     -     4 trunk0
10.0.1.1           00:00:5e:00:01:01  UHLch      1      743     -     3 trunk0
10.0.1.130         50:7b:9d:3b:16:ca  UHLl       0    44615     -     1 trunk0
10.0.1.254         00:0d:b9:2f:9a:7c  UHLc       1      588     -     3 trunk0
10.0.1.255         10.0.1.130         UHb        0        0     -     1 trunk0
100.64.3.2/31      100.64.3.2         UCn        0        0     -     4 vport0
100.64.3.2         fe:e1:ba:d0:16:86  UHLl       0        0     -     1 vport0
127.0.0.1          127.0.0.1          UHl        1     7592 32768     1 lo1



  

Guest VMs use rdomain 1 / rtable 1

# grep domain /etc/pf.conf
# nat guest VMs to the appropriate egress by routing domain
pass out on rdomain 1 from 100.64.0.0/10 to any rtable 1 nat-to ($ext)
pass in on rdomain 1 from 100.64.0.0/10 to (self) rtable 1
# redirect guest domain requests to unwind(8)
pass in proto { tcp udp } from 100.64.0.0/10 to any port domain rdr-to localhost



  

I use two instances of unwind(8)

$ ls -l /etc/rc.d/unwind*
-r-xr-xr-x  1 root  wheel  256 May 15 14:41 /etc/rc.d/unwind
lrwxr-xr-x  1 root  wheel    6 Sep 29  2023 /etc/rc.d/unwind1 -> unwind

$ grep unwind /etc/rc.conf.local 
pkg_scripts=unwind1 … 
unwind1_flags=-s /dev/unwind1.sock
unwind1_rtable=1
unwind_flags=



  

Final thoughts on WireGuard

● You are the architect of your own VPN topology.  

– My VPN is both “mesh” and “star”

● Mesh: communication between servers
● Star: workstations / mobile → Internet gateway
● 6 platforms: OpenBSD, Android, Windows

● The allowed IP blocks: “wgaip”

– Filter packets: by source IP address on incoming tunneled packets

– At least one address or block is required

– Can be ::0/0 or 0.0.0.0/0 (“do not filter packets”)



  

Questions?

Permission to use image from https://reverse.mortgage/
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