
Contributing to FreeBSD
via Github

A guide to all the fussy bits

Warner Losh

Some History

The Github Pull Request Experiment

● Started just after git migration
● What to do about github pull requests?
● Core requested I figure out next steps for our workflow.
● How do we use git better?
● What can we do to improve our workflow?

Pull Request Ideals

● Easy path for mature changes
● Integrate worth while changes
● Make contribution easier
● Stop ignoring changes
● Improvements our process and culture
● Help recruit new talent

Boring Background

Overview

● Baseline assumptions
○ You know what git is and how to use it
○ You know what Github is
○ Vague familiarity with FreeBSD’s infrastructure

● Github
○ Will highlight the basic mechanics
○ Some GUI pictures

● FreeBSD Expectations
○ What we want
○ What we don’t want
○ How we want it packaged

● How to Help Out

Why Github?

● A familiar process to many
● An experiment to try to increase engagement
● Improve our developer pipeline
● Easy to publish to Github w/o being completely dependent on it
● A place to try new ways to improve our general development workflow
● Changes are more visible and discoverable
● Better fit for more people than Phabricator

Target Audience

● Casual user with small fix
○ Man page improvements
○ Minor tweaks (new devices, build fix, etc)

● Casual developers with small to medium sized change
○ Fix to broken behavior
○ Optimizations with measured speed ups
○ Minor new feature

● People Wanting to Contribute
○ Improve the FreeBSD experience
○ Improve the patch acceptance workflow

● vendors with drivers for their hardware
● Focuses on base system, with callouts for docs and ports

Only One Part of the Story

● Bugzilla still for bugs
● Project private resources guard the source of truth repo
● Phabricator for developer review
● Complements CI efforts
● Mailing Lists

Why Not Phabricator?

● Have to create a new account
○ Most people already have github account

● Hard to discover changes
○ Phabricator’s interface makes it hard to find things to commit

● Hard to extract information
○ Phabricator tracks less information than git, and creating a commit message with proper credit

from that is hard
● Is End of Life

○ Although things like Phorge are replacing it, they aren’t materially fixing these defects
● Phabricator is a developer tool to communicate with other developers

○ Not a friendly place to contribute a change

Getting Started – Basic Flow

Basic Flow of Commits

FreeBSD cgit
src repo

Github freebsd
freebsd-src repo

main
mirroring

Developer
repo

Github fork of
freebsd-src repo

main
commits

fork

Pull Request

Staging Area (also
developer repo)

Developer downloads
Pull Request

main
commits

Creating a Fork

Grabbing the URL

Clone your new repo

10:46am rebo:[20061]> git clone -o github \
 https://github.com/qemu-bsd-user/freebsd-src
Cloning into 'freebsd-src'...
remote: Enumerating objects: 3287614, done.
remote: Counting objects: 100% (993/993), done.
remote: Compressing objects: 100% (585/585), done.
remote: Total 3287614 (delta 412), reused 815 (delta 397), pack-reused 3286621
Receiving objects: 100% (3287614/3287614), 2.44 GiB | 22.06 MiB/s, done.
Resolving deltas: 100% (2414925/2414925), done.
Updating files: 100% (100972/100972), done.
10:50am rebo:[20062]> cd freebsd-src

Make your changes

10:50am rebo:[20063]> git checkout -b bsdcan-demo
Switched to a new branch 'bsdcan-demo'
10:51am rebo:[20064]> vi mumble-foo
10:55am rebo:[20065]> git commit -a

● Rince, Lather, Repeat

Push Changes to Your Repo
11:15am rebo:[20066]> git push github
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 64 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 301 bytes | 3.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
remote:
remote: Create a pull request for 'bsdcan-demo' on GitHub by visiting:
remote: https://github.com/bsdimp/freebsd/pull/new/bsdcan-demo
remote:
To github.com:bsdimp/freebsd.git
 * [new branch] bsdcan-demo -> bsdcan-demo

Create Pull Request

More changes, repush

10:55am rebo:[20065]> git push github --force-with-lease

Pull Request Lands

Pull Request Rejected

Evaluating the Changes

First Steps

● Does it pass the CI steps on github
● Are there complaints from our ‘checker’ scripts

Do We Want It?

● Is it important enough
○ Typo fixes generally not wanted

● Automated Checkers
○ Signed errors
○ Theoretical problems

● Does it fix a real problem?
● Does it solve an interesting problem?
● Generally, cleanup and style changes generally not wanted
● But… on going work in an area may warrant an exception

Is it correct

● Is the code correct?
● Does it solve it in a desirable way?
● Does it integrate well into FreeBSD systems?

FreeBSD Style

● Style checker in Github
● But there’s FreeBSD architecture considerations
● Integrates to the FreeBSD specific things

Right Size

● Large enough to do something interesting, desirable and useful
● Small enough to be able to review
● < 10 commits
● < 200 lines changed
● (though those are just guidelines, not hard limits)
● Exceptions do apply

Right Subject

● Change in user-visible behavior
● Change that has consensus
● Change that is worth volunteer time to review, test and commit

Changes Are Mature Enough

● Some changes during review are inevitable
● Major rewrites

○ Must be tested
○ Must have been socialized
○ Must have little to no dissent in the community

● Changes are stable
○ Experimental changes that crash are not welcome

Vendor Driver Changes

● Can be large
● Assume vendor tested
● But we build everywhere (vendors don’t always)
● Sanity checks
● Possible alternative to “vendor commit bit”

Some Bad Examples

● Typos in comments
○ Nobody cares, unless you have real bug fixes too

● Theoretical Bugs
○ The kind found by “scanners” that look for patterns
○ That won’t change behavior
○ Though some exceptions may apply

● Changes that don’t even compile
○ Changes should pass the github testing jobs

● Changes that fix one thing but break other things

How to Help

Github Actions

● Moving the process along
○ “Thank you for your submission”
○ “Thanks for your update” + tag

● Better checking
○ Commit message checking
○ Merge commit filtering

Tooling

● Staging
● CI testing
● Pushing with rebase
● Other sanity checkers

○ Run igor on man page changes
○ Run lua checker on lua changes

● Context Sensitive Checking
○ No need to rebuild world for man page changes
○ But need to for man page addition (and install too!)

Questions?
Warner Losh

imp@bsdimp.com

