
Re-thinking address space management for
pointer provenance

Brooks Davis brooks.davis@sri.com
BSDCan 2024, Ottawa, Canada

Address space reservations

mailto:brooks.davis@sri.com

Pointer provenance

"Implementations are permitted to track the origins of
a bit-pattern and treat those representing an
indeterminate value as distinct from those
representing a determined value. They may also treat
pointers based on different origins as distinct even
though they are bitwise identical.”

– WG14 (C standard committed) DR260 Committee Response

Pointer provenance continued

“Just because two pointers point to the same
address, does not mean they are equal and can
be used interchangeably.”

– Pointers Are Complicated, or: What's in a Byte? Ralf J
https://www.ralfj.de/blog/2018/07/24/pointers-and-bytes.html

https://www.ralfj.de/blog/2018/07/24/pointers-and-bytes.html

What has pointer provenance?

• C: DR 260 (elaborated in N2577)
• C++: from C (standard unclear)
• Rust: RFC 3559-rust-has-provenance
• CHERI capabilities

CHERI 128-bit capabilities

• Capabilities extend integer memory addresses
• Metadata (bounds, permissions, …) control how they may be used
• Guarded manipulation controls how capabilities may be

manipulated; e.g., provenance validity and monotonicity
• Tags protect capability integrity/derivation in registers + memory

12
8-

bi
t

ca
pa

bi
lit

y

v

1-
bi

t
ta

g

permissions bounds compressed relative to address

64-bit virtual address

Upper bound

Lower bound

Pointer
address

Memory
allocation

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers
via valid transformations; invalid pointers cannot be used

• Bounds prevent pointers from being manipulated to access the wrong object

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection,
but also higher-level policies such as scalable software compartmentalization

Globals

Data

Heap Stack

Code

Control flow

Monotonicity
Permissions

Integrity and provenance
validity

Bounds

CheriABI – pointer provenance & least privilege

• New process ABI where all pointers are CHERI capabilities
• Implemented in CheriBSD, our FreeBSD fork

• Kernel provides bounded pointers for all mappings
• Includes initial executable, stack, etc as well as mmap

• System calls do not violate bounds (no kernel escape hatch)
• Necessary for compartmentalization

• mmap can only manipulate backing of a new mapping or via an
existing capability
• This decouples address space reservation and backing store configuration
• Software capability permission (SW_VMEM) required to change/unmap

https://xkcd.com/195
CC BY-NC 2.5 DEED

Hilbert curve

https://xkcd.com/195
https://creativecommons.org/licenses/by-nc/2.5/

Processes memory layout (not to scale, no ASLR)

.text

.data
.bss

stack

v

GUARD

jemalloc

break

NULL
(no mapping)

End of “heap“

vdso

mmap overview

void *mmap(
 void *addr, /* address to map at aka hint */
 size_t len, /* size */
 int prot, /* page protections */
 int flags, /* how to map */
 int fd, /* file descriptor (often -1) */
 off_t offset /* offset in file (often 0) */
);

mmap does many things

• Space for malloc
• addr=0, flags=MAP_ANON

• Shared file mapping
• addr=0, flags MAP_SHARED

• Shared library
• addr=0, flags=MAP_GUARD
• addr=base,

flags=MAP_FIXED
• addr=base+ts,

flags=MAP_FIXED
• addr=base+ds,

flags=MAP_ANON|MAP_FIXED

malloc

file GUARD

text

data

bss

Maybe too many things?

• Extending an allocation
• addr=0, flags=MAP_ANON
• addr=base+len,

flags=MAP_ANON
• if new is base+len, treat as one
• jemalloc does this

• Absurd things
• Shingled mappings
• Random fixed mappings

malloc

new

malloc

The problems with mmap

• mmap conflates two things:
• Address space allocation
• Configuration of backing store and permissions

• All mmap callers can do anything
• MAP_GUARD and MAP_EXCL prevent some errors
• …but every call is with ambient authority

• Lack of cross-platform agreement beyond POSIX

Updating mmap for CheriABI

Normal mmap use is unchanged

• Space for malloc
• addr=0, flags=MAP_ANON

• Shared file mapping
• addr=0, flags MAP_SHARED

• Shared library
• addr=0, flags=MAP_GUARD
• addr=base,

flags=MAP_FIXED
• addr=base+ts,

flags=MAP_FIXED
• addr=base+ds,

flags=MAP_ANON|MAP_FIXED

malloc

file GUARD

text

data

bss

What about weird mmap use?

• Extending an allocation
• addr=0, flags=MAP_ANON
• addr=base+len,

flags=MAP_ANON
• if new is base+len, treat as one

• Absurd things
• Shingled mappings
• Random fixed mappings

malloc

new

malloc

What about compressed bounds?

• Bounds are compressed relative
to the address

• Different alignments and lengths
require different numbers of bits
to represent

• Consider these four ways to
represent 14 pages

• With CHERI, some lengths can’t
be represented and thus must be
padded

• Note: CHERI has much broader
representability than illustrated

pad

C

CC

C

Unaligned More aligned

More compact Compact & aligned

Unmapping memory

• Like mmap, munmap can
unmap anywere!

• Even with CheriABI
restrictions, you can punch
holes in a mapping

• Now we have aliasing between
pointers to active mappings

Alias

Alias

Reservations to the rescue!

• Initial mapping creates a
reservation (and populates)
• Can not be merged with other

reservations

• Unmapping pages creates
UNMAPPED VM entries
• Can not be mapped over

• Padding starts UNMAPPED
• Reservation is removed when

all entries are unmapped

r0 r1

unmapped

r2

u

Temporal safety issues: use-after-munmap

• Consider the sequence:
• mmap a file
• …
• munmap the file mapping
• cause malloc to mmap more

space
• <bug> access pointer to file

mapping which aliases with
malloc’d memory

• Usual answer: don’t do that
• CHERI answer: capability

revocation

Cornucopia Reloaded: Load Barriers for CHERI Heap
Temporal Safety

Nathaniel Wesley Filardo
Microsoft
Canada

Brett F. Gutstein
University of Cambridge

UK

Jonathan Woodru�
University of Cambridge

UK

Jessica Clarke
University of Cambridge

UK

Peter Rugg
University of Cambridge

UK

Brooks Davis
SRI International

USA

Mark Johnston
University of Cambridge

UK

Robert Norton
Microsoft

UK

David Chisnall
SCI Semiconductor

UK

Simon W. Moore
University of Cambridge

UK

Peter G. Neumann
SRI International

USA

Robert N. M. Watson
University of Cambridge

UK

Abstract
Violations of temporalmemory safety (“use after free”, “UAF”)
continue to pose a signi�cant threat to software security.
The CHERI capability architecture has shown promise as a
technology for C and C++ language reference integrity and
spatial memory safety. Building atop CHERI, prior works –
CHERIvoke and Cornucopia – have explored adding heap
temporal safety. The most pressing limitation of Cornucopia
was its impractical “stop-the-world” pause times.

We present Cornucopia Reloaded, a re-designed drop-in
replacement implementation of CHERI temporal safety, us-
ing a novel architectural feature – a per-page capability load
barrier, added in Arm’s Morello prototype CPU and CHERI-
RISC-V – to nearly eliminate application pauses. We ana-
lyze the performance of Reloaded as well as Cornucopia
and CHERIvoke on Morello, using the CHERI-compatible
SPEC CPU2006 INT workloads to assess its impact on batch
workloads and using pgbench and gRPC QPS as surrogate in-
teractive workloads. Under Reloaded, applications no longer
experience signi�cant revocation-induced stop-the-world
periods, without additional wall- or CPU-time cost over Cor-
nucopia and with median 87% of Cornucopia’s DRAM tra�c
overheads across SPEC CPU2006 and < 50% for pgbench.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’24, April 27 - May 1, 2024, San Diego, CA, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
h�ps://doi.org/10.1145/3620665.3640416

CCS Concepts: • Software and its engineering! Soft-
ware safety; • Security and privacy ! Operating sys-
tems security; • Hardware! Emerging architectures.

Keywords: capability revocation, CHERI, temporal safety,
use after free

ACM Reference Format:
Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodru�, Jes-
sica Clarke, Peter Rugg, Brooks Davis, Mark Johnston, Robert Nor-
ton, David Chisnall, SimonW.Moore, Peter G. Neumann, and Robert
N. M. Watson. 2024. Cornucopia Reloaded: Load Barriers for CHERI
Heap Temporal Safety. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’24). ACM, New York, NY, USA,
18 pages. h�ps://doi.org/10.1145/3620665.3640416

1 Introduction
Many programming languages o�er an object-centric model
of memory. New objects, initially unrelated to existing ob-
jects, are allocated on demand, used, and then released (im-
plicitly and/or explicitly depending on the language). Low-
ering the language’s model to the underlying architecture,
most often built around a coherent, integer-indexed array of
memory words, is generally not fully-abstract; it becomes
possible to 1 confuse integers, object references, and mem-
ory indices that do not point to valid objects (such as those
used internally by thememory allocator), risking reference in-
tegrity violations; 2 access adjacent objects, reaching beyond
the bounds of a referenced object, violating spatial safety;
and/or 3 access an object after its life ended (“use-after-free”,
“UAF”) or after the underlying memory has been repurposed
(“use-after-reallocation”, “UAR”), violating temporal safety.
These a�ordances beyond the programmer’s intent continue
to pose a signi�cant threat to software security [17, 35], and

How it works

• Reservation is unmapped over
time

• Fully UNMAPPED reservation
becomes a QUARANTINE entry

• When an adjacent reservation
becomes a QUARANTINE entry
they can be merged

• Revocation pass invalidates all
capabilities to largest
QUARANTINE entry

• QUARANTINE entry is removed

r0 r1

UNMAPPED

r2

u

UNMAPPEDUNMAPPED

UNMAPPEDQUARANTINEUNMAPPEDQUARANTINEQUARANTINE

An odd side effect

• Revocation is batched → unmapped address space isn’t
immediately available

• Stale capabilities will become invalid at some arbitrary point after
unmap

• We want mmap to behave consistently:
• If addr is a valid capability, it must correspond to an active reservation and

MAP_FIXED must be set in flags
• If addr is NULL-derived it must not correspond to any reservation
• By implication: addr must not have metadata and be invalid
• We don’t want it to work IFF enough time has passed for revocation
• Too confusing

Unmapping bug in the wild

/* From autoconf prior to 2.72 (heavily trimmed) */
data2 = mmap (0, pagesize, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd2, 0L);
munmap (data2, pagesize);
/* Next, try to mmap the file at a fixed address
 * which already has something else allocated at
 * it. [...] */
data2 != mmap (data2, pagesize,
 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FIXED,
 fd, 0L);

Race!

One other change: PROT_MAX()

• mmap returns capabilities
• The property of monotonicity means the capability returned at

reservation create must have all required permissions
• ...but reserving space with PROT_NONE is a common pattern

• Convert to: PROT_MAX(PROT_READ|…)|PROT_NONE
• Capability gets read/write permissions
• Page access restricted until later updates
• Maximum page permission limited by PROT_MAX()
• (Arm Morello Linux returns RWX caps instead.)

Summary of mmap changes for CHERI

• Initial allocation reserves fixed
amount of address space
• No growth without relocation

• No immediate reuse of
unmapped address space
• This reuse is unsafe in general
• (Test programs can use

libprocstat to find empty address
space)

• Use PROT_MAX() to control
capability permission

10 FreeBSD Journal

lder architectures (e.g., MIPS, early i386) only supported read and write
permission, but modern CPUs generally support an execute permission

as well. Used correctly, the execute permission can mitigate a number of
common security vulnerabilities. For example, it used to be common to
exploit a program by writing code (commonly known as shell code) to an
improperly bounds checked string on the stack and changing the saved
return address of the function to point to the string. By removing the exe-
cute permission from the stack, we can prevent this attack. Most FreeBSD
architectures do this.

As expected, breaking simple, stack-based attacks leads attackers to look
for other vulnerabilities. One of the simplest next steps was to find a way to
write code to a page that was mapped executable followed by smashing the
stack to point the return address to it. A popular mitigation for this is the
write-XOR-execute policy (W^X). This policy prevents mapping pages with
both the write and execute permission. For most programs, this works with-
out program changes outside the runtime linker, but some programs such as
Java virtual machines and web browsers use just-in-time (JIT) compilers to
generate code and run it. These JITs are critical to achieving reasonable per-
formance, but, implemented naively, they don't work with W^X. Fortun-
ately, it is usually a simple matter to map pages writable, write generated

Permissions
The virtual address space of a process contains a number of
physical pages mapped into memory. These might be pages
from a program, a library, an ordinary file, or anonymous
pages that begin life as a zeroed page. These mappings are
maintained in a translation lookaside buffer (TLB). On modern
architectures, the TLB allows pages to be mapped with a combina-
tion of read, write, and execute permissions. This enables things
like read-only sharing of code and data between processes for
physical memory utilization.

i n F r e e B S D by Brooks Davis

I m p r o v i n g M e m o r y

O

Are these incompatibilities
worth it?

Hyrum's Law

With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

https://www.hyrumslaw.com

https://www.hyrumslaw.com/

https://xkcd.com/1172/
CC BY-NC 2.5 DEED

https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/

Arguments in favor

Memory safe desktop with library compartmentalization!
(Chrome and OpenJDK currently excluded)

• Pointer provenance
respected
• Systems languages (C,

C++, Rust) expect this

• Races eliminated
• Changes are portable
• (As much as mmap is…)

• 50-100MLoC memory safe
C/C++ code show viability!

• CheriABI enables fine grained
compartmentalization

Implementation notes

• Reservations are enabled on a per-vm_map basis
• Reservations are identified by the lowest VA in the reservation
• Member added to struct vm_map_entry
• Entries from different reservations can’t be merged

• UNMAPPED entries have the MAP_ENTRY_UNMAPPED flag set
• Mostly the same as MAP_GUARD, but can’t be mapped over
• Morello Linux allows mremap to extend over UNMAPPED pages

• QUARANTINE state is indicated by an inheritance of
VM_INHERIT_QUARANTINE
• Chosen because special handling is required in vmspace_fork()
• Adjacent entries can be merged (gaps filled during revocation)

Open questions

• How should mremap interact with reservations?
• First documented along with mmap, but never implemented in FreeBSD
• Extending reservations is theoretically possible, but fraught

• Do address space reservations make sense for non-CHERI ABIs?
• Would need opt-out for old code
• Does increased vm map entry count have a measurable impact in practice?

• When should we merge CHERI support to FreeBSD?
• CHERI-RISC-V standardization in progress
• Silicon in 2025?

Questions?
https://www.cheribsd.org

