
Alamosa: A Tiered Disk Cache for NetBSD

 2

Problem Statement

● Slow disk is large, fast disk is small
● Workloads not always easy to partition into pieces

● You don’t know in advance which records will be hot

● Linux has bcache
● ZFS has some similar capabilities that don’t quite scratch the itch

(ZIL, L2ARC)
● And also, I felt like writing a block device driver

 3

Target Workloads

● Ultimately, will be used on production server hosting metadata for
a embedded device

● sqlite (some)
● lmdb (lots)

● Workload characteristics
● Almost entirely reads
● Write performance was not a priority

 4

Early Prototypes

● I experimented a lot with fancy designs at first
● Large LRU structures
● Elaborate free-space management structures

● … then realized I don’t need these

● Eventual realization: it’s a cache, it can work like one
● Free space management? Nah
● Large-scale LRU? No way
● All that matters is tracking clean and dirty

 5

The Original Alamosa Design

 6

Metadata

● A metadata block has metadata lines
● Each one describes a full cache line – eight blocks
● These go to/from the slow disk as one

● A metadata line is 64 bits – 0:59 is line base addr, 60-61 is
reserved, 62 is valid, 63 is dirty

● Metadata occupies the beginning portion of the fast disk and is
contiguous

 7

Cache Lines and Lookup

● A cache line’s base address is hashed, producing a index into both
the cache-line region and the metadata region

● Why store lines?
● Many workloads are at least a little bit sequential
● Shoot for the best ratio of metadata to cache data – allows more

effective storage capacity!
● One 64b descriptor describing eight disk blocks is a good tradeoff

 8

Block Lookup Flow

 9

Implementation Adventures

● NetBSD has had a few generations of disk and block I/O interfaces
● It also has kernel autoconfiguration, for clean management of

devices and their relationships
● For the most part, I did not use these interfaces

● The ccd driver largely uses older interfaces, and I started off as a ccd
derivative because it seemed spiritually similar to what I’m doing. :)

● In retrospect, cgd might have been a better basis…
● Right now, configuration entirely ioctl driven

 10

Implementation Adventures, Part 2

● A cycle: Build, crash kernel,
get stuck in angry FFS fsck,
repeat

● I should have used rump
kernels for this

● … but I didn’t
● Next time!

 11

Design Limitations

● Contention from direct-mapped design kills performance on target
workloads

● Not written to be tunable
● “Baby’s first block driver” – implementation is not great

● No autoconf
● Writeback should be handled via queues

● Write performance was never a priority

 12

Back to the drawing board...

 13

Alamosa2 to the Rescue!

● Direct-mapped LRU replaced with new multi-way structure
● 4-way associativity default – that is, four lines of same hash can

simultaneously exist in the cache
● Intended to be configurable

● Eviction policy can be random
● … or modified random – track x recently-used lines in an in-memory

structure, choose randomly between older lines

● Persistent LRU is probably not desirable

 14

Alamosa2 Structure

 15

New Driver Features

● Proper kernel autoconf!
● LWP-based writeback and flexible locking
● Configurability

● Eventual goal – “generate a tuned profile by running test workloads for
a few minutes”

● Higher associativity potentially gives higher hit rate, but has tradeoffs
● Line size – longer lines can mean higher hit rate or lower depending on

access locality

 16

Lessons Learned for Alamosa2

● Use rump kernels when you can
● Use scripted VMs from a standard image when you can’t

● Test early
● Test often
● Automate
● If building and testing module is a Major Process, you’re doing it

wrong

 17

The Road to Upstream

● Get Alamosa2 stable!
● … make it run production workloads on two platforms for at least a

couple of months without eating data!
● Throw strange stuff at it! Try to break it!

● Do performance characterization!
● Freeze the design!

 18

The Road to Upstream: Part 2

● Once everything is working, have the upstream conversation
● Early 2025? Here’s hoping!
● Alamosa is being developed alongside some other components

● Dual-kernel realtime
● Like Xenomai

● ia64 fixes
● Hoping to boot on real hardware (rx2800)
● NVMM? Maybe… but the QEMU dependency is rough

● Ideally, I’d like to upstream all of them eventually

 19

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

